Advertisement

Conservation Genetics

, 9:1589 | Cite as

Establishing the foundation for an applied molecular taxonomy of otters in Southeast Asia

  • Klaus-Peter Koepfli
  • Budsabong Kanchanasaka
  • Hiroshi Sasaki
  • Hélène Jacques
  • Kristina D. Y. Louie
  • Toanvong Hoai
  • Nguyen Xuan Dang
  • Eli Geffen
  • Arno Gutleb
  • Sung-yong Han
  • Thrine M. Heggberget
  • Lionel LaFontaine
  • Hang Lee
  • Roland Melisch
  • Jordi Ruiz-Olmo
  • Margarida Santos-Reis
  • Vadim E. Sidorovich
  • Michael Stubbe
  • Robert K. Wayne
Research Article

Abstract

Four species of otters (Mustelidae, Lutrinae) occur in Southeast Asia and are considered to be of conservation concern: Aonyx cinerea (Asian small-clawed otter), Lutra lutra (Eurasian otter), Lutra sumatrana (Hairy-nosed otter), and Lutrogale perspicillata (Smooth-coated otter). Among these, L. sumatrana is endemic to the region, yet little is known about its biology, and the precise distribution of all four species in Southeast Asia is not well known. Furthermore, the taxonomy and systematics of L. sumatrana and L. perspicillata have been the subject of controversy, which has implications for the legal protection and for conservation programs of these taxa. To resolve these controversies, we used a multigene data set comprised of segments from 13 nuclear and 5 mitochondrial loci (11,180 nucleotides) to evaluate the phylogenetic relationships of Asian Old World otters. Phylogenies were also estimated using two mitochondrial loci (1,832 nucleotides) obtained from two or more individuals of the four Southeast Asian species. The results from maximum parsimony, maximum likelihood and Bayesian inference showed that L. sumatrana and L. lutra are sister taxa, whereas L. perspicillata is sister to A. cinerea. Furthermore, the results from the two-mitochondrial gene analyses indicate that L. sumatrana is reciprocally monophyletic with respect to L. lutra, supporting the specific validity of the former taxon. Signs such as tracks and feces are often used in field surveys to provide information on the distribution and abundance of otters, but the accuracy of these methods may be compromised when several closely related species occur sympatrically. Therefore, the two-gene data set was used to develop a provisional set of diagnostic nucleotides that can be potentially used to identify the four species of Southeast Asian otters from noninvasively collected biological samples, such as feces.

Keywords

Otter Lutrinae Lutra sumatrana Molecular phylogeny Molecular taxonomy Southeast Asia Conservation genetics 

Notes

Acknowledgements

This paper is dedicated with great fondness to the late Claus Reuther for his tireless efforts on behalf of otter conservation worldwide and for his unwavering encouragement and guidance of those doing research on otters and their habitats. He will be sorely missed. We are very grateful to John F. Dallas and Chris Mason for providing tissue samples from Lutra lutra, and to Gerard Willemsen for valuable discussion and insights on otter taxonomy. We thank Graham Slater for review and comments on the manuscript. This study was supported by a National Science Foundation grant (BSR 0614585) awarded to R.K. Wayne.

Supplementary material

10592_2007_9498_MOESM1_ESM.pdf (188 kb)
(PDF 188 kb)

References

  1. Amrine-Madsen H, Koepfli K-P, Wayne RK, Springer MS (2003) A new phylogenetic marker apolipoprotein B provides compelling evidence for eutherian relationships. Mol Phylogenet Evol 28:225–240PubMedCrossRefGoogle Scholar
  2. Avise JC, Nelson WS (1989) Molecular genetic relationships of the extinct dusky seaside sparrow. Science 243:646–648PubMedCrossRefGoogle Scholar
  3. Barriel V (1994) Molecular phylogenies and how to code insertion/deletion events. Life Sci 317:693–701Google Scholar
  4. Bowen BW, Meylan AB, Avise JC (1991) Evolutionary distinctiveness of the endangered Kemp’s ridley sea turtle. Nature 352:709–711PubMedCrossRefGoogle Scholar
  5. Breathnach R, Benoist C, O’Hare K, Gannon F, Chambon P (1978) Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci USA 75:4853–4857PubMedCrossRefGoogle Scholar
  6. Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803CrossRefGoogle Scholar
  7. Brouillette JA, Andrew JR, Venta PJ (2000) Estimate of nucleotide diversity in dogs with a pool-and-sequence method. Mamm Genome 11:1079–1086PubMedCrossRefGoogle Scholar
  8. Chasen FN (1940) A handlist of Malaysian mammals. Bull Raffles Mus 15:1–109Google Scholar
  9. Conroy J, Melisch R, Chanin P (1998) The distribution and status of the Eurasian Otter (Lutra lutra) in Asia—a preliminary review. IUCN Otter Spec Group Bull 15:15–30Google Scholar
  10. Corbet GB, Hill JE (1992) The mammals of the Indomalayan Region: a systematic review. Oxford University Press, OxfordGoogle Scholar
  11. Couturier J, Dutrillaux B (1986) Evolution chromosomique chez les Carnivores. Mammalia 50:124–162Google Scholar
  12. Cracraft J (1983) Species concepts and speciation analysis. Curr Ornithol 1:159–187Google Scholar
  13. Cunningham CW (1997) Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing an iterative procedure for choosing among phylogenetic methods. Syst Biol 46:464–478PubMedCrossRefGoogle Scholar
  14. Daugherty CH, Cree A, Hay JM, Thompson MB (1990) Neglected taxonomy and continuing extinctions of tuatara (Sphenodon). Nature 347:177–179CrossRefGoogle Scholar
  15. Davis JA (1978) A classification of otters. In: Duplaix N (ed) Proceedings of the first working meeting of the Otter Specialist Group. IUCN, Morges, pp 14–33Google Scholar
  16. Davis JI, Nixon KC (1992) Populations genetic variation and the delimitation of phylogenetic species. Syst Biol 41:421–435CrossRefGoogle Scholar
  17. Davison A, Birks JDS, Brookes RC, Braithwaite TC, Messenger JE (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool (Lond) 257:141–143CrossRefGoogle Scholar
  18. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy species delimitation and DNA barcoding. Philos Trans R Soc Lond B 360:1905–1916CrossRefGoogle Scholar
  19. Dragoo JW, Honeycutt RL (1997) Systematics of mustelid-like carnivores. J Mammal 78:426–443CrossRefGoogle Scholar
  20. Duplaix N (1975) River otters in captivity. In: Martin RD (ed) Breeding endangered Species in captivity. Academic Press, London, pp 315–327Google Scholar
  21. Duplaix N (1980) Observations on the ecology and behavior of the giant river otter Pteronura brasiliensis in Suriname. Revue d’Écologie: La Terre et la Vie 34:495–620Google Scholar
  22. Ellerman JR, Morrison-Scott TCS (1966) Checklist of palaearctic and Indian mammals 1758 to 1946, 2nd edn. British Museum (Natural History), LondonGoogle Scholar
  23. Farrell LE, Roamn J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9:1583–1590PubMedCrossRefGoogle Scholar
  24. Felsenstein J (1978) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27:401–410CrossRefGoogle Scholar
  25. Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA (2005) Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst Biol 54:317–337PubMedCrossRefGoogle Scholar
  26. Foster-Turley P, Santiapillai C (1990) Action plan for Asian Otters. In: Foster-Turley P, Macdonald S, Mason C (eds) Otters: an action plan for their conservation. IUCN/SSC Otter Specialist Group, Gland, Switzerland, pp 52–63Google Scholar
  27. Geoffroy St-Hilaire I (1826) Loutre Dictionnaire Classique d-Histoire Naturelle 9:515–520Google Scholar
  28. Gómez-Moliner BJ, Cabria MT, Rubines J, Garin I, Madeira MJ, Elejalde A, Aihartza J, Fournier P, Palazón S (2004) PCR-RFLP identification of mustelid species: European mink (Mustela lutreola) American mink (M vison) and polecat (M putorius) by analysis of excremental DNA. J Zool (Lond) 262:311–316CrossRefGoogle Scholar
  29. Gray JE (1865) Revision of the genera and species of Mustelidae in the British Museum. Proc Zool Soc Lond 1865:100–154Google Scholar
  30. Hájková P, Zemánová B, Bryja J, Hájek B, Roche K, Tkadlec E, Zima J (2006) Factors affecting success of PCR amplification of microsatellite loci from otter faeces. Mol Ecol Notes 6:559–562CrossRefGoogle Scholar
  31. Hansen MM, Jacobsen L (1999) Identification of mustelid species: otter (Lutra lutra) American mink (Mustela vison) and polecat (Mustela putorius) by analysis of DNA from faecal samples. J Zool (Lond) 247:177–181CrossRefGoogle Scholar
  32. Harris CJ (1968) Otters: a study of the recent Lutrinae. Weidenfeld and Nicoloson, LondonGoogle Scholar
  33. Hwang YT, Larivière S (2005) Lutrogale perspicillata. Mammal Species 786:1–4CrossRefGoogle Scholar
  34. IUCN (2006) 2006 IUCN Red List of Threatened Species. Prepared by the IUCN Species Survival Commission, IUCN, Gland, SwitzerlandGoogle Scholar
  35. Jiang Z, Priat C, Galibert F (1998) Traced orthologous amplified sequence tags (TOASTs) and mammalian comparative maps. Mamm Genome 9:577–587PubMedCrossRefGoogle Scholar
  36. Kanchanasaka B (1997) Ecology of otters in the upper Khwae Yai River Thung Yai Naresuan Wildlife Sanctuary Thailand. Nat Hist Bull Siam Soc 45:79–92Google Scholar
  37. Kanchanasaka B (2001) Tracks and other signs of the Hairy-nosed otter (Lutra sumatrana). IUCN Otter Spec Group Bull 18:57–63Google Scholar
  38. Koepfli K-P, Wayne RK (1998) Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b sequences. J Zool (Lond) 246:401–416CrossRefGoogle Scholar
  39. Koepfli K-P, Wayne RK (2003) Type I STS markers are more informative than cytochrome b in phylogenetic reconstruction of the Mustelidae (Mammalia: Carnivora). Syst Biol 52:571–593PubMedCrossRefGoogle Scholar
  40. Koepfli K-P, Gompper ME, Eizirik E, Ho C-C, Linden L, Maldonado JE, Wayne RK (2007) Phylogeny of the Procyonidae (Mammalia: Carnivora): molecules morphology and the Great American Interchange. Mol Phylogenet Evol 43:1076–1095PubMedCrossRefGoogle Scholar
  41. Kruuk H, Kanchanasaka B, O’Sullivan S, Wanghongsa S (1993) Identification of tracks and other sign of three species of otter Lutra lutra L perspicillata and Aonyx cinerea in Thailand. Nat Hist Bull Siam Soc 41:23–30Google Scholar
  42. Kruuk H, Kanchanasaka B, O’Sullivan S, Wanghongsa S (1994) Niche separation in three sympatric otters Lutra perspicillata L lutra and Aonyx cinerea in Huai Kha Khaeng Thailand. Biol Conserv 69:115–120CrossRefGoogle Scholar
  43. Larivière S (2001) Aonyx capensis. Mammal Species 671:1–6CrossRefGoogle Scholar
  44. Larivière S (2003) Amblonyx cinerea. Mammal Species 720:1–5CrossRefGoogle Scholar
  45. Lekagul B, McNeely JA (1988) Mammals of Thailand. Darnsutha Press, ThailandGoogle Scholar
  46. Lesson RP (1827) Manuel de mammalogie. Roret Paris 1:153–157Google Scholar
  47. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB et al (2005) Genome sequence comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819PubMedCrossRefGoogle Scholar
  48. López-Giráldez F, Gómez-Moliner BJ, Marmi J, Domingo-Roura X (2005) Genetic distinction of American and European mink (Mustela vison and M lutreola) and European polecat (M putorius) hair samples by detection of a species-specific SINE and a RFLP assay. J Zool (Lond) 265:405–410CrossRefGoogle Scholar
  49. Lubis IR (2005) First recent record of Hairy-nosed otter in Sumatra Indonesia. IUCN Otter Spec Group Bull 22:14–20Google Scholar
  50. Lubis IR, Melisch R, Rosmalawati S (1998) Food analysis of Asian small-clawed otter (Aonyx cinerea) and Smooth-coated otter (Lutrogale perspicillata) from spraints in the Pamanukan mangroves West Java Indonesia. In: Gossow H, Kranz A (eds) Otters and fish farms. Proceedings International Workshop Litschau 8th–9th Feb 1996 Austria. Boku-Rep Wildl Res Game Manage 14:95–105Google Scholar
  51. Lyons LA, Laughlin TF, Copeland NG, Jenkins NA, Womack JE, O’Brien SJ (1997) Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat Genet 15:47–56PubMedCrossRefGoogle Scholar
  52. Mason C, Macdonald S (1990) Conclusions and priorities for otter conservation. In: Foster-Turley P, Macdonald S, Mason C (eds) Otters: an action plan for their conservation. IUCN/SSC Otter Specialist Group, Gland, Switzerland, pp 80–89Google Scholar
  53. Melisch R (1995) Zur Biologie und Erhaltung der Otter (Carnivora Mustelidae) in Westjava Indonesien Diplomarbeit. Institut für Zoologie Universität, Hohenheim, StuttgartGoogle Scholar
  54. Melisch R, Foster-Turley P (1996) First record of hybridisation in otters (Lutrinae: Mammalia) between Smooth-coated otter Lutrogale perspicillata (Geoffroy 1826) and Asian small-clawed otter Aonyx cinerea (Illiger 1815). Zool Gart 66:284–288Google Scholar
  55. Melisch R, Lubis IR (1998) Otters and their role in ricefields and fishponds of West Java Indonesia. In: Gossow H, Kranz A (eds) Otters and fish farms. Proceedings International Workshop Litschau 8th–9th Feb 1996 Austria. Boku-Rep Wildl Res Game Manage 14:23–32Google Scholar
  56. Murphy WJ, Eizirik E, Johnson WE, Zhang Y-P, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origin of placental mammals. Nature 409:614–618PubMedCrossRefGoogle Scholar
  57. Nguyen XD, Pham TA, Le HT (2001) New information about the Hairy-nosed otter (Lutra sumatrana) in Vietnam. IUCN Otter Spec Group Bull 18:64–75Google Scholar
  58. Nylander JAA (2004) MrModeltest v2 Program distributed by the author. Evolutionary Biology Centre Uppsala UniversityGoogle Scholar
  59. Payne J, Francis CM, Phillips K (1985) Field guide to the mammals of Borneo. The Sabah Society with World Wildlife Fund, Malaysia, Kuala LumpurGoogle Scholar
  60. Pilot M, Gralak B, Goszczynski J, Posluszny M (2007) A method of genetic identification of pine marten (Martes martes) and stone marten (Martes foina) and its application to faecal samples. J Zool (Lond) 271:140–147CrossRefGoogle Scholar
  61. Pocock RI (1921) On the external characters of some species of Lutrinae (otters). Proc Zool Soc Lond 1921:535–546Google Scholar
  62. Pocock RI (1940) Notes on some British Indian otters with descriptions of two new subspecies. J Bombay Nat Hist Soc 41:514–517Google Scholar
  63. Pocock RI (1941) The fauna of British India including Ceylon and Burma Mammalia 2. Taylor and Francis, LondonGoogle Scholar
  64. Pohle H (1919) Die Unterfamilie der Lutrinae. Archiv für Naturgeschichte 85A:1–249Google Scholar
  65. Poole CM (2003) The first records of Hairy-nosed otter Lutra sumatrana from Cambodia with notes on the national status of three other otter species. Nat Hist Bull Siam Soc 51:273–280Google Scholar
  66. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  67. Radinsky LB (1968) Evolution of somatic sensory specialization in otter brains. J Comp Neurol 134:495–506PubMedCrossRefGoogle Scholar
  68. Rafinesque CS (1832) Description of a new otter, Lutra concolor, from Assam in Asia. Atlantic J 1:62Google Scholar
  69. Rambaut A, Drummond AJ (2003) Tracer v1.3. Available at http://www.evolvezoooxacuk/
  70. Riddle AE, Pilgrim KL, Mills LS, McKelvey KS, Ruggiero LF (2003) Identification of mustelids using mitochondrial DNA and non-invasive sampling. Conserv Genet 4:241–243CrossRefGoogle Scholar
  71. Rokas A, Carroll SB (2006) Bushes in the tree of life. PLoS Biol 4:1899–1904CrossRefGoogle Scholar
  72. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  73. Rudyanto MR, Melisch R (1994) Dua laporan tentang perburuan dan perdagangan berang-berang di Sumatera [Two reports of otter hunting and trade from Sumatra]. In: PHPA/AWB-INDONESIA (eds) Prosiding Simposium Pertama Mengenai Berang-berang die Indonesia Peranan Berang-berang bagi manusia Bogor, 7th April 1994, PHPA/Asian Wetland Bureau-Indonesia, Bogor, pp 99–103Google Scholar
  74. Sambrook J, Fritsch EF, Maniatus T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  75. Sato JJ, Hosoda T, Wolsan M, Suzuki H (2004) Molecular phylogeny of arctoids (Mammalia: Carnivora) with emphasis on phylogenetic and taxonomic positions of the ferret-badgers and skunks. Zool Sci 21:111–118PubMedCrossRefGoogle Scholar
  76. Sato JJ, Wolsan M, Suzuki H, Hosoda T, Yamaguchi Y, Hiyama K, Kobayashi M, Minami S (2006) Evidence from nuclear DNA sequences sheds light on the phylogenetic relationships of Pinnipedia: single origin with affinity to Musteloidea. Zool Sci 23:125–146PubMedCrossRefGoogle Scholar
  77. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33PubMedCrossRefGoogle Scholar
  78. Sebastian AJ (1995) The Hairy-nosed otter in Peninsular Malaysia. IUCN Otter Spec Group Bull 11:3Google Scholar
  79. Sivasothi N, Nor BHM (1994) A review of otters (Carnivora: Mustelidae: Lutrinae) in Malaysia and Singapore. Hydrobiologia 285:151–170CrossRefGoogle Scholar
  80. Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19:654–660PubMedCrossRefGoogle Scholar
  81. Sorenson M (1998) TreeRot version 2. University of Michigan, Ann ArborGoogle Scholar
  82. Swofford DL (2002) PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4.0. Sinauer Associates, SunderlandGoogle Scholar
  83. Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403:188–192PubMedCrossRefGoogle Scholar
  84. Thompson FC (1997) Names: the keys to biodiversity. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II: understanding and protecting our biological resources. John Henry Press, Washington DC, pp 199–211Google Scholar
  85. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  86. van Zyll de Jong CG (1972) A systematic review of the Nearctic and Neotropical river otters (Genus Lutra Mustelidae Carnivora). Roy Ontario Mus Life Sci Contrib 80, 104 ppGoogle Scholar
  87. van Zyll de Jong CG (1987) A phylogenetic study of the Lutrinae (Carnivora; Mustelidae) using morphological data. Can J Zool 65:2536–2544CrossRefGoogle Scholar
  88. Venta PJ, Brouillette JA, Yuzbasiyan-Gurkan V, Brewer GJ (1996) Gene-specific universal mammalian sequence-tagged sites: application to the canine genome. Biochem Genet 34:321–341PubMedCrossRefGoogle Scholar
  89. Willemsen GF (1980) Comparative study of the functional morphology of some Lutrinae especially Lutra lutra Lutrogale perspicillata and the Pleistocene Isolalutra cretensis. Proc Konink Ned Akad van Wetenschappen B 83:289–326Google Scholar
  90. Willemsen GF (1986) Lutrogale palaeoleptonyx (Dubois 1908) a fossil otter from Java in the Dubois collection. Proc Konink Ned Akad van Wetenschappen B 89: 195–200Google Scholar
  91. Willemsen GF (1992) A revision of the Pliocene and Quaternary Lutrinae from Europe. Scr Geol 101:1–115Google Scholar
  92. Wozencraft WC (2005) Order Carnivora. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference. The Johns Hopkins University Press, Baltimore, pp 279–348Google Scholar
  93. Wurster DH, Benirschke K (1968) Comparative cytogenetic studies in the order Carnivora. Chromosoma 24:336–382PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Klaus-Peter Koepfli
    • 1
  • Budsabong Kanchanasaka
    • 2
  • Hiroshi Sasaki
    • 3
  • Hélène Jacques
    • 4
  • Kristina D. Y. Louie
    • 1
  • Toanvong Hoai
    • 1
  • Nguyen Xuan Dang
    • 5
  • Eli Geffen
    • 6
  • Arno Gutleb
    • 7
  • Sung-yong Han
    • 8
  • Thrine M. Heggberget
    • 9
  • Lionel LaFontaine
    • 10
  • Hang Lee
    • 11
  • Roland Melisch
    • 12
  • Jordi Ruiz-Olmo
    • 13
  • Margarida Santos-Reis
    • 14
  • Vadim E. Sidorovich
    • 15
  • Michael Stubbe
    • 16
  • Robert K. Wayne
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesUSA
  2. 2.Royal Forest DepartmentWildlife Research DivisionBangkokThailand
  3. 3.Chikushi Jogakuen University Junior CollegeDazaifuJapan
  4. 4.Société Francaise pour L′Etude et al Protection des MammiferesParisFrance
  5. 5.Department of ZoologyInstitute of Ecology and Biological ResourcesHanoiVietnam
  6. 6.Department of ZoologyTel Aviv UniversityTel AvivIsrael
  7. 7.Department of Production Animal Clinical Science, Norwegian School of Veterinary ScienceSection for Stationary ClinicOsloNorway
  8. 8.Korean Otter Research CenterHanam, HwacheonSouth Korea
  9. 9.Norwegian Institute for Nature ResearchTrondheimNorway
  10. 10.LutrAtlanticaLocquenoleFrance
  11. 11.Conservation Genome Resource Bank for Korean Wildlife, College of Veterinary Medicine and BK21 Program for Veterinary ScienceSeoul National UniversitySeoulSouth Korea
  12. 12.TRAFFIC International, c/o WWF GermanyFrankfurtGermany
  13. 13.Servei de Protecció i Gestió de la FaunaDirecció general del Patrimoni Natural i del Medi FisicBarcelonaSpain
  14. 14.Faculdade de Ciências de Lisboa, Centro de Biologia Ambiental/Departamento de Biologia AnimalUniversidade de LisboaLisboaPortugal
  15. 15.Vertebrate Predation Research Group, Institute of ZoologyNational Academy of Sciences of BelarusMinskBelarus
  16. 16.Institute of ZoologyMartin-Luther-University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations