Conservation Genetics

, Volume 9, Issue 6, pp 1467–1477 | Cite as

Phylogeography and population structure of the endangered Tehuantepec jackrabbit Lepus flavigularis: implications for conservation

  • Yessica RicoEmail author
  • Consuelo Lorenzo
  • Francisco X. González-Cózatl
  • Eduardo Espinoza
Research Article


The Tehuantepec jackrabbit (Lepus flavigularis) is an endangered species restricted to a small area in the Isthmus of Tehuantepec, Oaxaca, Mexico. To evaluate its phylogeographic structure, population genetics, and demographic history we sequenced the mitochondrial Control Region hypervariable domain (CR-1) for 42 individuals representing the entire species range. Phylogenetic patterns indicated that this species is subdivided into two highly divergent clades, with an average nucleotide genetic distance of 3.7% (TrN) between them. Clades A and B are geographically distributed in non-overlapping areas to the west and to the east of the Isthmus of Tehuantepec, respectively. Genetic diversity indices showed reduced genetic variability in L. flavigularis when compared to other species of Lepus within main clades and within populations. This low genetic diversity coupled with the restricted distribution to very small areas of occurrence and limited gene flow suggest that genetic drift has played an important role in the evolution of this species. Historical demographic analysis also pointed out that these two clades underwent a recent population expansion that started about 9,000 years ago for clade A and 3,200 years ago for clade B during the Holocene. Consequently, from the conservation perspective our results suggest that populations included in clades A and B should be regarded as distinct evolutionary lineages.


Lepus flavigularis Phylogeography Genetic diversity Population structure Control region Conservation 



We are grateful to Roberto Gutiérrez, Roberto Gutiérrez Jr., Leyberto Gutiérrez, Juan Antonio and family, Jorge Bolaños and the Municipality of Santa María del Mar for their valuable help during field work. We thank the families Gutiérrez-López and Gutiérrez-Vázquez for housing our crew. We are grateful to Fernando Cervantes, who provided tissue samples of L. callotis. Also, we thank Arturo Carrillo for his help on map editing. Constructive comments on the manuscript were provided by Duke S. Rogers and anonymous reviewers. This project was partially funded by the Consejo Nacional de Ciencia y Tecnología and Gobierno del Estado de Chiapas (project CHIS-2005-CO3-001) and El Colegio de la Frontera Sur (PATM project 11022). Instituto Nacional de Ecología, SEMARNAT, issued a special collecting permit (SGPA/DGVS/01468/06) that allowed us to catch specimens of L. flavigularis, take ear clips, and then release them.


  1. Abellán P, Gómez-Zurita J, Millán A, Sánchez-Fernández D, Velasco J, Galián J, Ribera I (2007) Conservation genetics in hypersaline inland waters: mitochondrial diversity and phylogeography of an endangered Iberian beetle (Coleoptera: Hydraenidae). Conserv Genet 8:79–88CrossRefGoogle Scholar
  2. Anderson S, Gaunt A (1962) A classification of the white-sided jackrabbits of Mexico. Amer Mus Novit 2088:1–16Google Scholar
  3. Avise JC (1989) Role of molecular genetics in recognition and conservation of endangered species. Trends Ecol Evol 4:279–281CrossRefGoogle Scholar
  4. Avise JC, Jonathan J, Ball R, Bermingham E, Lamb T, Neigel J, Reeb C, Saunders N (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522Google Scholar
  5. Baille J, Groombridge B (1996) Red list of threatened animals. IUCN, Gland, SwitzerlandGoogle Scholar
  6. Balakrishan CN, Monfort SL, Gaur A, Singh L, Sorenson MD (2003) Phylogeography and conservation of Eld´s deer (Cervus eldi). Mol Ecol 12:1–10CrossRefGoogle Scholar
  7. Bandelt HJ, Forsters P, Rohl A (1999) Median joining networks for inferring intraespecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  8. Bard E, Hamelin B, Arnold M, Montaggioni LF, Cabioch G, Faure G, Rougerie F (1996) Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382:241–244CrossRefGoogle Scholar
  9. Cervantes FA (1993) Lepus flavigularis. Mamm Spec 423:1–3Google Scholar
  10. Cervantes FA, Lorenzo C (1997) Morphometric differentiation of rabbits (Romerolagus and Sylvilagus) and jackrabbits (Lepus) of Mexico. Gibier Faune Sauvage Game Wildl 14:405–425Google Scholar
  11. Cervantes FA, Lorenzo C, Yates TL (2002) Genetic variation in population of Mexican lagomorphs. J Mammal 8:1077–1086CrossRefGoogle Scholar
  12. Cervantes FA, Villa B, Lorenzo C, Vargas J, Villaseñor L, López J (1999) Búsqueda de poblaciones supervivientes de la liebre endémica Lepus flavigularis. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México DFGoogle Scholar
  13. Cervantes FA, Yépez L (1995) Species richness of mammals from the vicinity of Salina Cruz, coastal Oaxaca, México. Anal Inst Biol 66:113–122Google Scholar
  14. Chapman JA, Flux JEC, Smith AT et al (1990) Introduction and overview of the lagomorphs. In: Chapman JA, Flux JE (eds) Rabbits, hares and pikas, status survey and conservation action plan. International Union for Conservation of Nature and Natural Resources, Gland, Switzerland, pp 154–168Google Scholar
  15. Chappell J, Omura A, Esat T, McMulloch M, Pandelfi J, Ota Y, Pillans B (1996) Reconciliation of the late quaternary sea level derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet Sci Lett 141:227–236CrossRefGoogle Scholar
  16. Chappell J, Shackleton NJ (1986) Oxygen isotopes and sea level. Nature 324:137–140CrossRefGoogle Scholar
  17. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660PubMedCrossRefGoogle Scholar
  18. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary process in conservation biology: an alternative to “evolutionary significant units”. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  19. Croizat L (1976) Biogeografía analítica y sintética (“panbiogeografía”) de Las Américas. Biblioteca de la Academia de Ciencias Físicas, Matemáticas y Naturales, CaracasGoogle Scholar
  20. Cromwell JE (1985) Marine geology of Laguna Superior, Mexico. An Inst Cienc Del Mar y Limnol 12:1–12Google Scholar
  21. De Cserna S (1989) An outline of the geology of Mexico, the geology of North America: an overview. The geological society of America, Boulder, ColoradoGoogle Scholar
  22. DeSalle R, Amato G (2004) The expansion of conservation genetics. Nature 5:702–712Google Scholar
  23. Diario Oficial de la Federación (2001) Norma Oficial Mexicana NOM-059-ECOL-2001, Protección Ambiental-Especies de flora y fauna silvestres en México-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio, Lista de especies en riesgo, Secretaria de Medio Ambiente, Recursos Naturales y Pesca, México Google Scholar
  24. Edwards CW, Bradley RD (2002) Molecular systematics and historical phylogeography of the Neotoma Mexicana species group. J Mammal 83:20–30CrossRefGoogle Scholar
  25. Eizirik E, Kim JH, Menotti-Raymond M, Crawshaw Jr PG, O´Brien SJ, Johnson WE (2001) Phylogeography, population history and conservation genetics of jaguars (Panthera onca, Mammalia, Felidae). Mol Ecol 10:65–79PubMedCrossRefGoogle Scholar
  26. Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0: An integrated software package for population genetics data analysis. Evo Bioinformatics Online 1:47–50Google Scholar
  27. Fairbanks RG (1989) A 17,000 year glacio-eustatic sea level record influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642CrossRefGoogle Scholar
  28. Farías V (2004) Spatio-temporal ecology and habitat selection of the critically endangered tropical hare (Lepus flavigularis) in Oaxaca, Mexico. PhD thesis, University of MassachusettsGoogle Scholar
  29. Farías V, Fuller TK, Cervantes FA, Lorenzo C (2006) Home range and social behavior of the endangered Tehuantepec jackrabbit (Lepus flavigularis) in Oaxaca, Mexico. J Mammal 87:748–756CrossRefGoogle Scholar
  30. Ferrusquía-Villafranca I (1993) Geology of Mexico: a synopsis. In: Rammamonthy TP, Bye R, Lot A, Fa J (eds) Biological diversity of Mexico origins and distribution, Oxford University Press, pp 3–107Google Scholar
  31. Fetzner JW (1999) Extracting high quality DNA from shed reptile skins: A simplified method. Biotechniques 26:1052–1054PubMedGoogle Scholar
  32. Flux JE, Angermann R (1990) The hares and jackrabbits. In: Chapman JA, Flux JE (eds) Rabbits, hares and pikas, Status survey and conservation action plan. International Union for the Conservation of Nature and Natural Resources, Gland, Switzerland, pp 61–94Google Scholar
  33. Frankham RJ (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  34. Frankham RJ, Ballou D, Briscoe DA (eds) (2004) Resolving taxonomic uncertainties and defining management units. In: A primer of conservation genetics. Cambridge, University Press, England, pp 100–122Google Scholar
  35. Fu YX (1997) Statical test of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147:915–925PubMedGoogle Scholar
  36. Fu YX, Li WH (1993) Statical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  37. González FX (1999) Molecular Systematics of the genus Lepus in North America (Mammalia: Lagomorpha). PhD thesis, Brigham Young UniversityGoogle Scholar
  38. Goodwin GG (1969) Mammals from the state of Oaxaca, México, in the American Museum of Natural History. Bull Am Mus Nat Hist 141:1–269Google Scholar
  39. Hendry M (1993) Sea-level movements and shore line changes. In: Maul GA (ed) Climate change in the Intra-Americas sea. Edward Arnorld, London, pp 115–161Google Scholar
  40. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  41. Huidobro L, Morrone JJ, Villalobos JL, Álvarez F (2006) Distributional patterns of freshwater taxa (fishes, crustaceans and plants) from the Mexican Transition Zone. J Biogeography 33:731–741CrossRefGoogle Scholar
  42. Instituto Nacional de Ecología (1997) Programa de Conservación de la Vida Silvestre y Diversificación Productiva en el Sector Rural, 1997–2000 México, Secretaria de Medio Ambiente, Recursos Naturales y Pesca, Instituto Nacional de Ecología, MéxicoGoogle Scholar
  43. IUCN (2006) International Union for Conservation of Nature and Natural Resources. Red list of threatened species. IUCN Species Survival Commission, Gland, Switzerland. Cited 12 Jan 2007
  44. Kaplan NL, Darden T, Hudson R (1989) The coalescent process in models with selection. Genetics 120:819–829Google Scholar
  45. Kasapidis P, Suchentrunk F, Magoulas A, Kotoulas G (2005) The shaping of mitochondrial phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of Late Pleistocene climatic fluctuations and anthropogenic translocations. Mol Phylogenet Evol 34:55–66PubMedCrossRefGoogle Scholar
  46. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA data, and the branching order in Hominoidea. J Mol Evol 29:170–179PubMedCrossRefGoogle Scholar
  47. Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686PubMedCrossRefGoogle Scholar
  48. Lambeck K, Yokoyama Y, Purcell T (2002) Into and out of the Last Glacial Maximum: sea-level change during oxygen isotope stages 3 and 2. Quatern Sci Rev 21:343–360CrossRefGoogle Scholar
  49. Li M, Wei F, Goossens B, Feng Z, Tamate HB, Bruford MW, Funk SM (2005) Mitochondrial phylogeography and subspecific variation in the red panda (Ailurus fulgens): implications for conservation. Mol Phylogenet Evol 36:78–89PubMedCrossRefGoogle Scholar
  50. Lorenzo C, Cervantes FA, Barragán F, Vargas J (2006) New records of the endangered Tehuantepec jackrabbit (Lepus flavigularis) from Oaxaca, Mexico. Southwest Nat 1:116–119CrossRefGoogle Scholar
  51. Lorenzo C, Cervantes FA, Vargas J (2003) Chromosomal relationships among three species of jackrabbits (Lepus: Leporidae) from Mexico. West North Am Nat 63:11–20Google Scholar
  52. Lorenzo C, Cervantes FA, Vargas J, González FX (2001) Conservation of the critically endangered Lepus flavigularis: Final report. Lincoln Park Zoo Neotropic Fund, El Colegio de la Frontera Sur, San Cristóbal de Las Casas, Chiapas, MexicoGoogle Scholar
  53. Lorenzo C, Retana O, Cervantes FA, Vargas J, Portales G (2000) Status survey of the critically endangered Lepus flavigularis: Final report. Chicago Zoological Society, Board of the Trade Endangered Species Advisory Fund, El Colegio de la Frontera Sur, San Cristóbal de Las Casas, Chiapas, MexicoGoogle Scholar
  54. Lovette IJ, Bermingham E, Ricklefs RE (1999) Mitochondrial DNA philogeography and the conservation of endangered Lesser Antillean Icterus Orioles. Conserv Biol 5:1088–1096CrossRefGoogle Scholar
  55. Marboutin E, Peroux R (1995) Survival pattern of European hare in a decreasing population. J Appl Ecol 32:4087–4091Google Scholar
  56. Márquez A, Maldonado JE, González S, Beccacesi MD, García JE, Duarte JMB (2006) Phylogeography and Pleistocene demographic history of the endangered marsh deer (Blastocerus dichotomus) from the Río de la Plata Basin. Conserv Genet 7:563–575CrossRefGoogle Scholar
  57. McCarthy C (1996) Chromas ver 1.45, school of health science, Griffith University, Quesland, AustraliaGoogle Scholar
  58. Moritz C (1994) Defining evolutionarily significant units for conservation. Trends Ecol Evol 9:401–411Google Scholar
  59. Moritz C (1995) Uses of molecular phylogenies for conservation. Philos Trans Biol Sci 349:113–118CrossRefGoogle Scholar
  60. Morrone JJ, Márquez J (2001) Halffter´s Mexican transition zone, beetle generalized tracks, and geographical homology. J Biogeogr 28:635–650CrossRefGoogle Scholar
  61. Nelson E (1909) The rabbits of North America. North Am Fauna 29:9–287Google Scholar
  62. Parra-Olea G, García-París M, Wake DB (2002) Phylogenetic relationships among the salamanders of the Botiglossa macrinii species group (Amphibia: Plethodontidae), with descriptions of two new species form Oaxaca (México). J Herpetol 36:356–366Google Scholar
  63. Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267PubMedCrossRefGoogle Scholar
  64. Pierpaoli M, Riga F, Trocchi V, Randi E (1999) Species distinction and evolutionary relationship of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol Ecol 8:1805–1817PubMedCrossRefGoogle Scholar
  65. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–118PubMedCrossRefGoogle Scholar
  66. Posada D, Crandall KA (2001) Intraespecific gene geneaologies: trees grafting into networks. Trends Ecol Evol 16:37–45PubMedCrossRefGoogle Scholar
  67. Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615CrossRefGoogle Scholar
  68. Rogers AR, Harpending H (1992) Populations growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  69. Rozas J, Sanchez-DelBarrio JC, Messenguer X, Rozas R (2003) DnaSP, DNA Sequence Polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  70. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10CrossRefGoogle Scholar
  71. Sántiz E (2005) Selección de hábitat y densidad poblacional de la liebre del Istmo Lepus flavigularis (Wagner 1844) en Oaxaca, México. MSc thesis, Instituto de Ecología AC, MéxicoGoogle Scholar
  72. Shackleton NJ, Pisias NG (1985) Atmospheric carbon, orbital forcing and climate. In: Sunquist ET, Broecker WS (eds), The carbon cycle and atmospheric C02, natural variations Archean to present. American Geophysical Union, Washington DC pp 303–317Google Scholar
  73. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562PubMedGoogle Scholar
  74. Sullivan JJ, Markert JA, Kilpatrick CW (1997) Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Syst Biol 46:426–440PubMedCrossRefGoogle Scholar
  75. Swofford DL (2002) PAUP* Phylogenetic Analysis Using Parsimony, Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  76. Tajima F (1989) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460Google Scholar
  77. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzee. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  78. Templeton A (2006) Gene flow and population history. In: Population genetics and microevolutionary theory, John Wiley & SonsGoogle Scholar
  79. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data III, Cladogram estimation. Genetics 132:619–633PubMedGoogle Scholar
  80. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  81. Vargas J (2000) Distribución, abundancia y hábitat de la liebre endémica Lepus flavigularis (Mammalia: Lagomorpha), MSc thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  82. Vogler AP, DeSalle R (1994) Diagnosing units of conservation management. Cons Biol 8:354–363CrossRefGoogle Scholar
  83. Waltari E, Cook J (2005) Hares on ice: phylogeography and historical demographics of Lepus articus, L. othus, and L. timidus (Mammalia: Lagomorpha). Mol Ecol 14:3005–3016PubMedCrossRefGoogle Scholar
  84. Waples RS (1991) Pacific Salmon, Oncorhynchus spp. and the definition of ‘‘species’’ under the endangered species act. Mar Fish Rev 53:11–22Google Scholar
  85. Zheng X, Arbogast BS, Kenagy GJ (2003) Historical demography and genetic structure of sister species: deermice (Peromyscus) in the North American temperate rain forest. Mol Ecol 12:711–712PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Yessica Rico
    • 1
    Email author
  • Consuelo Lorenzo
    • 1
  • Francisco X. González-Cózatl
    • 2
  • Eduardo Espinoza
    • 1
  1. 1.El Colegio de la Frontera SurSan Cristóbal de Las CasasMexico
  2. 2.Centro de Educación Ambiental e Investigación Sierra de HuautlaUniversidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations