Conservation Genetics

, Volume 9, Issue 5, pp 1125–1137 | Cite as

Genetic diversity of populations of Merodon aureus and M. cinereus species complexes (Diptera, Syrphidae): integrative taxonomy and implications for conservation priorities on the Balkan Peninsula

  • Vesna Milankov
  • Gunilla Ståhls
  • Jelena Stamenković
  • Ante Vujić
Research Article


The genetic structure of 10 populations of the Merodon aureus group from the Balkan Peninsula was examined through allozyme electrophoresis and mitochondrial DNA sequencing of the cytochrome c oxidase subunit I (COI). Six diagnosable cryptic taxa were identified within the morphologically defined species M. aureus Fabricius, 1805 and M. cinereus (Fabricius, 1794), with clear separation of the populations (((M. aureus A + M. aureus B) + cinereus complex) + M. aureus C). The parsimony analysis of COI sequence data of the aureuscinereus complex using Merodon avidus A species as an outgroup resulted in two main clades, (M. aureus A + M. aureus B) and ((M. aureus C + M. cinereus B + M. cinereus C) + M. cinereus A), which differed on average by 5.7%. The observed spatial distribution of the taxonomic diversity of the group suggested that these taxa originated from a common ancestral population in the Mediterranean. Identification of genetic uniqueness and genetic endemism emphasizes the importance of molecular markers and estimation of genetic diversity in recognition of conservation units. The primary goals of the conservation measures that we propose are the protection of phylogenetic lineages within the highly diverse M. aureus group taxa and conservation of the genetic variation through management of important areas.


Allozymes MtDNA Cryptic taxa Genetic units Genetic diversity Conservation Diptera Merodon 



The authors wish to thank Jasmina Ludoski for her help with the technical matters. This work was supported in part by the Ministry of Science and Environmental Protection of Serbia, Grant Number 143006B, the Provincial Secretariat for Science and Technological Development (Maintenance of biodiversity – “Hot spots” on the Balkan and Iberian Peninsula) and the Carl Cedercreutz Foundation (Helsinki, Finland).


  1. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MAGoogle Scholar
  2. Ayala FJ, Powell JR (1972) Allozymes as diagnostic characters of sibling species of Drosophila. Proc Natl Acad Sci USA 69(5):1094–1096PubMedCrossRefGoogle Scholar
  3. Bolger DT, Alberts AC, Sauvajot RM et al (1997) Response of rodents to habitat fragmentation in costal southern California. Ecol Appl 7:552–563CrossRefGoogle Scholar
  4. Clary D, Wolstenholme D (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271PubMedCrossRefGoogle Scholar
  5. Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668CrossRefGoogle Scholar
  6. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284PubMedCrossRefGoogle Scholar
  7. Funk JD, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423CrossRefGoogle Scholar
  8. Goloboff P (1999) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15:415–428CrossRefGoogle Scholar
  9. Hedrick PW, Lee RN, Hurt CR (2006) The endangered Sonoran topminnow: examination of species and ESUs using three mtDNA genes. Conserv Genet 7:483–492CrossRefGoogle Scholar
  10. Hoelzer GA (1997) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees revisited. Evolution 51:622–626CrossRefGoogle Scholar
  11. Levene H (1949) On a matching problem arising in genetics. Ann Math Stat 20:91–94CrossRefGoogle Scholar
  12. Lipscomb D, Platnick N, Wheeler Q (2003) The intellectual content of taxonomy: a comment on DNA taxonomy. Trends Ecol Evol 18:65–66CrossRefGoogle Scholar
  13. Ludoški J, Milankov V, Vujić A (2004) Low genetic differentiation among conspecific populations of Melanogaster nuda (Diptera, Syrphidae). Int J Dipterol Res 15:229–235Google Scholar
  14. Marcos-Garcia MªA, Vujić A, Mengual X (2007) Revision of Iberian species of the genus Merodon Meigen, 1803 (Diptera: Syrphidae). Eur J Entomol 104:531–572Google Scholar
  15. Mensel H, Jäger E, Weinert E (1965) Vergleichende chorologie der zentraleuropäischen flora I, text. Veb Gustav Fisher Verlag, JenaGoogle Scholar
  16. Milankov V (2001) Evolutionary relationships of the ruficornis and aeneus groups of species of the genus Merodon Meigein, 1803 (Diptera: Syrphidae). Ph.D. Thesis, University of Novi Sad (in Serbian, English abstr.)Google Scholar
  17. Milankov V, Ståhls G, Vujić A (in press) Molecular diversity of populations of the Merodon ruficornis group (Diptera, Syrphidae) on the Balkan Peninsula. J Zool Syst Evol ResGoogle Scholar
  18. Milankov V, Stamenković J, Ludoški J, Ståhls G, Vujić A (2005) Diagnostic molecular markers and the genetic relationships among tree species of the Cheilosia canicularis group (Diptera: Syrphidae). Eur J Entomol 102:125–131Google Scholar
  19. Milankov V, Vujić A, Ludoški J (2001) Genetic divergence among cryptic taxa of Merodon avidus (Rossi, 1790) (Diptera: Syrphidae). Int J Dipterol Res 12:15–24Google Scholar
  20. Moritz C (1994) Defining “Evolutionary Significant Units” for conservation. Trends Ecol Evol 9:373–375CrossRefGoogle Scholar
  21. Moritz C, Cicero C (2004) DNA barcoding: promis and pitfalls. PloS Biol 2:1529–1531CrossRefGoogle Scholar
  22. Munstermann LE (1979) Isozymes of Aedes aegypti: phenotypes, linkage, and use of genetic analysis of sympatric population in East Africa. D. Phil. Thesis, University of Notre Dame, IndianaGoogle Scholar
  23. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  24. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  25. Neigel JE, Avise JC (1993) Application of a random walk model to geographic distributions of animal mitochondrial DNA variation. Genetics 135:1209–1220PubMedGoogle Scholar
  26. Nixon KC (2002) WinClada version 1.00.08, Published by author, Ithaca, New York (
  27. Pasteur N, Pasteur G, Bonhomme F, Catalan J, Britton-Davidian J (1988) Practical isozyme genetics. Ellis Horwood Limited, ChichesterGoogle Scholar
  28. Peck LV (1988) Family Syrphidae. In: Soos A (ed) Catalogue of Palaearctic Diptera, vol 8. Akademia Kiado, Budapest, pp 11–230Google Scholar
  29. Prager EM, Wilson AC (1976) Congruency of phylogenies derived from different proteins. J Mol Evol 9:45–57PubMedCrossRefGoogle Scholar
  30. Rojo S, Ståhls G, Pérez-Bañón C, Marcos-García MA (2006) Larval morphology and taxonomic implications based on mitochondrial DNA sequences of West Palaearctic tibialis-group species of subgenus Pandasyopthalmus (Diptera: Syrphidae: Paragus). Eur J Entomol 103:443–458Google Scholar
  31. Roteray G (1993) Colour guide to heverfly larvae (Diptera: Syrphidae). Dipt Digest 9:1–156Google Scholar
  32. Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20(4):1026–1033PubMedCrossRefGoogle Scholar
  33. Rubinoff D, Holland BS (2005) Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst Biol 54:952–961PubMedCrossRefGoogle Scholar
  34. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighing, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  35. Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman and Company, San FranciscoGoogle Scholar
  36. Speight MCD (2004) Species accounts of European Syrphidae (Diptera) 2004. In: Speight MCD, Castella E, Sarthou J.-P, Monteil C (eds) Syrph the Net, the database of European Syrphidae, vol 44. Syrph the Net publications, DublinGoogle Scholar
  37. Swofford DL, Selander RB (1989) BIOSYS-1: a computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1.7. Users manual. Illinois Natural History Survey, Champaign, pp 1–42Google Scholar
  38. Šimić S, Vujić A (1996) Hoverfly fauna (Diptera: Syrphidae) of the southern part of the mountain Stara Planina, Serbia. Acta ent serb 1:21–30Google Scholar
  39. Thompson FC (ed) (2005) Biosystematic Database of World Diptera., accessed on 19 January 2006
  40. Thorpe JP (1982) The molecular clock hypothesis: Biochemical evaluation, genetic differentiation and systematics. Annu Rev Ecol Syst 13:139–168CrossRefGoogle Scholar
  41. Van de Wweyer G, Dils J (2002) Contribution to the knowledge of the Syrphidae from Greece (Diptera: Syrphidae). Phegea 27:69–77Google Scholar
  42. Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland, MAGoogle Scholar
  43. Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55CrossRefGoogle Scholar
  44. Wright S (1978) Evolution and the genetics of populations, vol 4. Variability within and among natural populations. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Vesna Milankov
    • 1
  • Gunilla Ståhls
    • 2
  • Jelena Stamenković
    • 1
  • Ante Vujić
    • 1
  1. 1.Department of Biology and EcologyUniversity of Novi SadNovi SadSerbia
  2. 2.Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations