Conservation Genetics

, 9:869 | Cite as

Small effective population sizes of two remnant ocelot populations (Leopardus pardalis albescens) in the United States

  • Jan E. Janečka
  • M. E. Tewes
  • L. L. Laack
  • L. I. GrassmanJr
  • A. M. Haines
  • R. L. Honeycutt
Research Article


Threatened populations are vulnerable to the effects of genetic drift and inbreeding, particularly when gene flow is low and the effective population size is small. Estimates of effective population size (Ne) provide important information on the status of endangered populations that have experienced severe fragmentation and serve as indicators of genetic viability. Genetic data from microsatellite loci were used to estimate Ne for the 2 remaining populations of the endangered ocelot (Leopardus pardalis albescens) occurring in the United States. Several methods were used to calculate Ne, resulting in estimates ranging from Ne = 8.0 (95% CI: 3.2–23.1) to 13.9 (95% CI: 7.7–25.1) for the population located at the Laguna Atascosa Wildlife Refuge in Cameron County, Texas. The ocelot population in Willacy County, Texas, had Ne estimates of 2.9 (95% CI: 1.7–5.6) and 3.1 (95% CI: 1.9–13.5), respectively. Estimates of Ne in both populations were below the critical value recommended for short-term viability.


Conservation biology Effective population size Microsatellites Endangered Ocelot 


  1. Aspi J, Roininem E, Ruokonen M, Kojola I, Vila C (2006) Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Mol Ecol 15:1561–1576PubMedCrossRefGoogle Scholar
  2. Beaumont MA (2003) Estimation of population growth or decline in genetically monitored populations. Genetics 164:1139–1160PubMedGoogle Scholar
  3. Beltran JF, Tewes ME (1995) Immobilization of ocelots and bobcats with ketamine hydrochloride and xylazine hydrochloride. J Wildl Dis 31:43–48PubMedGoogle Scholar
  4. Berthier P, Beaumont MA, Cornuet J-M, Luikart G (2002) Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics 160:741–751PubMedGoogle Scholar
  5. Blair FW (1950) Biotic provinces of Texas. Tex J Sci 2:93–117Google Scholar
  6. Brook BW, Tonkyn DW, O’Grady JJ, Frankham R (2002) Contribution of inbreeding to extinction risk in threatened species. Conserv Ecol 6:1–16Google Scholar
  7. Caso A (1995) Home range and habitat use of three neotropical carnivores in northeast mexico. Thesis, Texas A&M University-Kingsville, KingsvilleGoogle Scholar
  8. CITES (2005) Convention on International Trade in Endangered Species of Wild Fauna and Flora. Geneva. Accessed 10 February 2006
  9. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270. PubMedCrossRefGoogle Scholar
  10. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New YorkGoogle Scholar
  11. Dublin LI, Lotka AJ (1925) On the true rate of natural increase as exemplified by the population of the United States, 1920. J Amer Statist Ass 20:305–339CrossRefGoogle Scholar
  12. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa, Skeels) endemic to Morocco. Theor Appl Genet 92:832–8309CrossRefGoogle Scholar
  13. Frankham R, Ralls K (1998) Conservation biology: inbreeding leads to extinction risk. Nature 392:441–442CrossRefGoogle Scholar
  14. Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland, 135–149Google Scholar
  15. Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Anim Conserv 1:69–71CrossRefGoogle Scholar
  16. Goudet J (2001) FSTAT (Version 2.9.3), A program to estimate and test gene diversities and fixation indices. Available from software/fstat.html
  17. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  18. Grigione M, Caso A, List R, Gonzalez-Lopez C (2001) Status and conservation of endangered cats along the U.S. – Mexico border. The Endangered Species Update 18:129–132Google Scholar
  19. Haines AM, Tewes ME, Laack LL (2005a) Survival and sources of mortality in ocelots. J Wildl Manage 69:255–263CrossRefGoogle Scholar
  20. Haines AM, Tewes ME, Laack LL, Grant WE, Young J (2005b) Evaluating recovery strategies for an ocelot population in southern Texas. Biol Conser 126:512–522CrossRefGoogle Scholar
  21. Haines AM, Grassman LI, Tewes ME, Janečka JE (2006a) The first ocelot (Leopardus pardalis) monitored via GPS telemetry. Eur J Wildl Res 52:216–218CrossRefGoogle Scholar
  22. Haines AM, Janečka J, Tewes ME, Grassman LI (2006b) The importance of private lands for ocelot Leopardus paradalis conservation in the United States using camera traps. Oryx 40:1–5CrossRefGoogle Scholar
  23. Haines AM, Tewes ME, Laack LL, Horne JS, Young JH (2006c) A habitat-based population viability analysis for ocelots (Leopardus pardalis) in the United States. Biol Conserv 132:424–436CrossRefGoogle Scholar
  24. Haines AM, Tewes ME, Laack LL, Horne J, Young J (2007) Corrigendum: Habitat based population viability analysis of ocelots in southern Texas. Biol Conserv 136:326–327CrossRefGoogle Scholar
  25. Harveson P, Laack LL, Tewes ME (2004) Spatial patterns and soil type use by ocelots in Texas. Wildlife Society Bulletin 32:948–954CrossRefGoogle Scholar
  26. Hedrick PW (1995) Gene flow and genetic restoration: the Florida panther as a case study. Conser Biol 9:996–1007CrossRefGoogle Scholar
  27. Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216CrossRefGoogle Scholar
  28. Jackson VL, Laack LL, Zimmerman EG (2005) Landscape metrics associated with habitat use by ocelots in south Texas. J Wildl Manage 69:733–738CrossRefGoogle Scholar
  29. Jahrsdoerfer SE, Leslie DM (1988) Tamaulipan brushland of the Lower Rio Grande Valley of South Texas: descriptions, human impacts, and management options. US Fish and Wildlife Services, Biological Report 88:36–63Google Scholar
  30. Janečka JE (2006) Conservation genetics and ecology of ocelot with recovery implications in Texas. Dissertation, Texas A&M University-Kingsville and Texas A&M University, College Station, TexasGoogle Scholar
  31. Janečka JE, Walker CW, Tewes ME, Caso A, Laack LL, Honeycutt RL (2007) Phylogenetic relationships of ocelot (Leopardus pardalis albescens) populations from Tamaulipan Biotic Province and implications for recovery. Southwestern Nat 52:89–96CrossRefGoogle Scholar
  32. Keller L, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–240CrossRefGoogle Scholar
  33. Laack LL (1991) Ecology of the Ocelot (Felis pardalis) in South Texas. Thesis, Texas A&I University, KingsvilleGoogle Scholar
  34. Laack LL, Tewes ME, Haines AH, Rappole JH (2005) Reproductive life history of ocelots Leopardus pardalis in southern Texas. Acta Theriol 50:505–514Google Scholar
  35. Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158CrossRefGoogle Scholar
  36. Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mammal 78:320–335CrossRefGoogle Scholar
  37. Laval G, San Cristobal M, Chevalet C (2003) Maximum-likelihood and Markov Chain Monte Carlo approaches to estimate inbreeding and effective size from allele frequency changes. Genetics 164:1189–1204PubMedGoogle Scholar
  38. Liberg O, Andren H, Pedersen HC, Sand H, Sejberg D, Wabakken P, Akesson M, Bensch S (2005) Severe inbreeding depression in a wild wolf (Canis lupus) population. Biol Lett 1:17–20PubMedCrossRefGoogle Scholar
  39. Longmire JL, Maltbie M, Baker RJ (1997) Use of “lysis buffer” in isolation and its implications for museum collections. Occasional Papers, Museum of Texas Tech University 163:1–3Google Scholar
  40. Ludlow ME, Sunquist ME (1987) Ecology and behavior of ocelots in Venezuela. Nat Geogr Res 3:447–461Google Scholar
  41. Mace GM, Lande R (1991) Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conserv Biol 5:148–157CrossRefGoogle Scholar
  42. Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35. CrossRefGoogle Scholar
  43. Miller CR, Waits LP (2003) The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation. Proc Natl Acad Sci USA 100:434–439CrossRefGoogle Scholar
  44. Menotti-Raymond M, David VA, Lyons LA, Schäffer AA, Tomlin JF, Hutton MK, O’Brien SJ (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23PubMedCrossRefGoogle Scholar
  45. Murray JL, Gardner GL (1997) Leopardus pardalis. Mammal Species 548:10–17Google Scholar
  46. Navarro LD, Rappole JH, Tewes ME (1993) Distribution of the endangered ocelot (Felis pardalis) in Texas and northeastern Mexico. In: Medellin RA, Ceballos G (eds) Advances en el Estudio de los Mamiferos de Mexico, Publicaciones Especiales. Asociacion Mexicana de Mastozoologia, México, 157–169Google Scholar
  47. Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640PubMedGoogle Scholar
  48. Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size, experimental populations of Clarkia pulchella. Evolution 51:354–362CrossRefGoogle Scholar
  49. Newman D, Tallmon DA (2001) Beneficial fitness effects of gene flow in recently isolated populations. Conserv Biol 15:1054–1063CrossRefGoogle Scholar
  50. Nowell K, Jackson P (1996) Wild Cats: Status, Survey and Conservation Action Plan. IUCN, Gland, SwitzerlandGoogle Scholar
  51. Nunney L, Elam DR (1994) Estimating the effective population size of conserved populations. Conserv Biol 8:175–184CrossRefGoogle Scholar
  52. Peakall R, Smouse PE (2006) GENEALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  53. Peel D, Ovenden JR, Peel SL (2004) NeEstimator (Version 1.3): Software for estimating effective population size. Department of Primary Industries and Fisheries, Queensland Government, Deception Bay, QueenslandGoogle Scholar
  54. Pimm SL, Dollar L, Bass OL Jr (2006) The genetic rescue of the Florida panther. Anim Conserv 9:115–122CrossRefGoogle Scholar
  55. Ralls KJ, Ballou D, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2:185–193CrossRefGoogle Scholar
  56. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Her 86:24–249Google Scholar
  57. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:22 –225CrossRefGoogle Scholar
  58. Roelke ME, Martenson JS, O’Brien SJ (1993) The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr Biol 3:340–350. PubMedCrossRefGoogle Scholar
  59. Schwartz M, Tallmon DA, Luikart G (1998) Review of DNA-based census and effective population size estimators. Anim Conser 1:293–299CrossRefGoogle Scholar
  60. Seal US, Thorne ET, Bogan MA, Anderson SH (1989) Conservation biology and the black-footed ferret. Yale University Press, New Haven, ConnecticutGoogle Scholar
  61. Shindle DB, Tewes ME (1998) Woody species composition of habitats used by ocelots (Leopardus pardalis) in the Tamaulipan Biotic Province. Southw Nat 43:273–279Google Scholar
  62. Shindle DB, Tewes ME (2000) Immobilization of wild ocelots with tiletamine and zolazepam in southern Texas. J Wildl Dis 36:546–550PubMedGoogle Scholar
  63. Smith JLD, McDougal C (1991) The contribution of variance in lifetime reproduction to effective population size in tigers. Conserv Biol 5:484–490CrossRefGoogle Scholar
  64. Sunquist ME, Sunquist F (2002) Wild cats of the world. University of Chicago Press, Chicago, IllinoisGoogle Scholar
  65. Tallmon DA, Belleman E, Taberlet P (2004a) Genetic monitoring of Scandinavian brown bear effective population size. J Wildl Manage 68:960–965CrossRefGoogle Scholar
  66. Tallmon DA, Beaumont MA, Luikart GH (2004b) Effective population size estimation using approximate Bayesian computation. Genetics 167:977–988PubMedCrossRefGoogle Scholar
  67. Tewes ME (1986) Ecological and behavioral correlates of ocelot spatial patterns. Dissertation, University of Idaho, Moscow, IdahoGoogle Scholar
  68. Tewes ME, Everett DD (1986) Status and distribution of the endangered ocelot and jaguarundi in Texas. In: Miller SD, Everett DD (eds) Cats of the world: biology, conservation, and management. National Wildlife Federation, Washington, DC, pp. 147–158Google Scholar
  69. Uphyrkina O, Miquelle D, Quigley H, Driscoll C, O’Brien SJ (2002) Conservation genetics of the Far Eastern leopard (Panthera pardus oreintalis). J Hered 93:303–311PubMedCrossRefGoogle Scholar
  70. USFWS (1999) Endangered and threatened wildlife and plants. US Fish and Wildlife Service, Washington, DCGoogle Scholar
  71. Vilà C, Sundqvist A-K, Flagstad Ø, Seddon J, Björnerfeldt S, Kojola I, Casulli A, Sand H, Wabakken P, Ellegren H (2002) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B 270:90–97Google Scholar
  72. Walker CW (1997) Patterns of genetic variation in ocelot (Leopardus pardalis) populations for south texas and Northern Mexico. Dissertation, Texas A&M University-Kingsville and Texas A&M University, College Station, TexasGoogle Scholar
  73. Wang JL (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res 78:243–257PubMedCrossRefGoogle Scholar
  74. Wang JL (2004) Application of the one-migrant-per-generation rule to conservation and management. Conserv Biol 18:332–343CrossRefGoogle Scholar
  75. Wang JL (2005) Estimation of effective population sizes from data on genetic markers. Phil Trans R Soc Lond B 360:1395–1409CrossRefGoogle Scholar
  76. Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446PubMedGoogle Scholar
  77. Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391PubMedGoogle Scholar
  78. Waples RS (1991) Genetic methods for estimating the effective size of Cetacean populations. Report of the International Whaling Commission Special Issue 13:279–300Google Scholar
  79. Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352PubMedCrossRefGoogle Scholar
  80. Waples RS, Yokota M (2007) Temporal estimates of effective population size in species with overlapping generations. Genetics 175:219–233PubMedCrossRefGoogle Scholar
  81. Westermeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698CrossRefGoogle Scholar
  82. Wildt DE, Bush M, Goodrowe KL, Packer C, Pusey AE, Brown JL, Joslin P, O’Brien SJ (1987) Reproductive and genetic consequences of founding isolated lion populations. Nature 329:328–331CrossRefGoogle Scholar
  83. Williamson EG, Slatkin M (1999) Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics 152:755–761PubMedGoogle Scholar
  84. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedGoogle Scholar
  85. Wright S (1969) Evolution and the genetics of populations, iv. variability within and among natural populations. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jan E. Janečka
    • 1
    • 2
    • 3
  • M. E. Tewes
    • 1
  • L. L. Laack
    • 4
  • L. I. GrassmanJr
    • 1
  • A. M. Haines
    • 1
  • R. L. Honeycutt
    • 2
    • 5
  1. 1.Feline Research Program, Caesar Kleberg Wildlife Research InstituteTexas A&M University-KingsvilleKingsvilleUSA
  2. 2.Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationUSA
  3. 3.Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationUSA
  4. 4.Laguna Atascosa National Wildlife RefugeRio HondoUSA
  5. 5.Natural Science DivisionPepperdine UniversityMalibuUSA

Personalised recommendations