Conservation Genetics

, Volume 9, Issue 4, pp 791–805 | Cite as

Genetic structure and signature of population decrease in the critically endangered freshwater cyprinid Chondrostoma lusitanicum

  • Vítor Sousa
  • Filipa Penha
  • Maria J. Collares-Pereira
  • Lounès Chikhi
  • Maria M. Coelho
Research Article

Abstract

The endemic and critically endangered cyprinid Chondrostoma lusitanicum has a very restricted distribution range. In order to estimate genetic diversity, characterize population structure and infer the demographic history, we examined six microsatellite loci and cytochrome b (mtDNA) sequences from samples taken throughout C. lusitanicum’s geographical range. Estimates of genetic diversity were low in all samples (average He < 0.35). The microsatellite data pointed to a major difference between northern (Samarra and Tejo drainages) and southern (Sado and Sines drainages) samples. This separation was not so clear with mtDNA, since one sample from the Tejo drainage grouped with the southern samples. This could be related with ancestral polymorphism or with admixture events between northern and southern sites during the late Pleistocene. Nevertheless, both markers indicate high levels of population differentiation in the north (for microsatellites FST >  0.23; and for mtDNA ΦST > 0.74) and lower levels in the south (FST < 0.05; ΦST < 0.40). With microsatellites we detected strong signals of a recent population decrease in effective size, by more than one order of magnitude, starting in the last centuries. This is consistent with field observations reporting a severe anthropogenic-driven population decline in the last decades. On the contrary mtDNA suggested a much older expansion. Overall, these results suggest that the distribution of genetic diversity in C. lusitanicum is the result of both ancient events related with drainage system formation, and recent human activities. The potential effect of population substructure generating genetic patterns similar to a population decrease is discussed, as well as the implications of these results for the conservation of C. lusitanicum.

Keywords

Endangered endemic Cyprinidae Chondrostoma lusitanicum Demographic history Population structure Microsatellites Mitochondrial DNA 

Supplementary material

References

  1. Alves J, Coelho MM (1994) Genetic variation and population subdivision of the endangered Iberian cyprinid Chondrostoma lusitanicum. J Fish Biol 44:627–636CrossRefGoogle Scholar
  2. Andrade C, Rebêlo L, Brito P, Freitas MC (2006) Processos Holocénicos; Aspectos da Geologia, Geomorfologia e Dinâmica Sedimentar do Troço Tróia-Sines. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal no Contexto da Ibéria, Univ Évora, pp 397–418Google Scholar
  3. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  4. Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 158:2013–2029Google Scholar
  5. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2000) GENETIX 4.01, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, Université de Montpellier II, Montpellier. (http://www.univ-montp2.fr/∼genetix/genetix/genetix.htm)
  6. Cabral MJ (coord.), Almeida J, Almeida PR et al. (eds.) (2005) Livro vermelho dos Vertebrados de Portugal. Instituto da Conservação da Natureza, Lisboa, 660 ppGoogle Scholar
  7. Chikhi L, Nichols RA, Barbujani G, Beaumont M (2002) Y genetic data support the Neolithic demic diffusion model. Proc Natl Acad Sci USA 99(17):11008–11013PubMedCrossRefGoogle Scholar
  8. Chikhi L, Bruford MW (2005) Mammalian population genetics and genomics. In: Ruvinsky A, Marshall Graves J (eds) Mammalian genomics. CABI publishers, London, pp 539–584Google Scholar
  9. Coelho MM, Alves J, Rodrigues E (1997) Patterns of genetic divergence in Chondrostoma lusitanicum Collares-Pereira, in intermittent Portuguese rivers. Fish Manag Ecol 4:223–232CrossRefGoogle Scholar
  10. Coelho MM, Mesquita N, Collares-Pereira MJ (2005) Chondrostoma almacai, a new cyprinid species from the southwest of Portugal, Iberian Peninsula. Folia Zool 54(1–2):201–212Google Scholar
  11. Corander J, Tang J (2007) Bayesian analysis of population structure based on linked molecular information. Math Biosci 205(1):19–31PubMedCrossRefGoogle Scholar
  12. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  13. Culling MA, Janko K, Boron A et al (2006) European colonization by the spined loach (Cobitis taenia) from Ponto-Caspian refugia based on mitochondrial DNA variation. Mol Ecol 15:173–190PubMedCrossRefGoogle Scholar
  14. Dawson KJ, Belkhir K (2001) A Bayesian approach to the identification of panmictic populations and the assignment of individuals. Genet Res 78:59–77PubMedCrossRefGoogle Scholar
  15. Dowling TE, Tibbets CA, Minckley WL, Smith GR (2002) Evolutionary relationships of the plagopterins (Teleostei: Cyprinidae) from cytochrome b sequences. Copeia 2002:665–678CrossRefGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  17. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  18. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50Google Scholar
  19. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  20. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge, pp 617Google Scholar
  21. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  22. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  23. Gagnon MC, Angers B (2006) The determinant role of temporary postglacial drainages on the genetic structure of fishes. Mol Ecol 15:1051–1065PubMedCrossRefGoogle Scholar
  24. Goossens B, Chikhi L, Ancrenaz M et al (2006) Genetic signature of anthropogenic population collapse in orang-utans. PLoS Biology 4(2):e25PubMedCrossRefGoogle Scholar
  25. Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  26. Kullberg JC, Terrinha P, Pais J, Reis RP, Legoinha P (2006) Arrábida e Sintra: dois exemplos de tectónica pós-rifting da Bacia Lusitaniana. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal no Contexto da Ibéria. Univ Évora, pp 369–395Google Scholar
  27. Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Cons Gen 7:295–302CrossRefGoogle Scholar
  28. Magalhães MF, Schlosser IJ, Collares-Pereira MJ (2003) The role of life history in the relationship between population dynamics and environmental variability in two Mediterranean stream fishes. J Fish Biol 63:300–317CrossRefGoogle Scholar
  29. Mesquita N (2005) Phylogeography and evolution of the cyprinids from the small drainages from the south of Portugal: an approach with the application of molecular markers. PhD Thesis, Univ Lisboa, PortugalGoogle Scholar
  30. Mesquita N, Carvalho G, Shaw P, Crespo E, Coelho MM (2001) River basin-related genetic structuring in an endangered fish species, Chondrostoma lusitanicum, based on mtDNA sequencing and RFLP analysis. Heredity 86:253–264PubMedCrossRefGoogle Scholar
  31. Mesquita N, Cunha C, Hänfling B et al (2003) Isolation and characterization of polymorphic microsatellite loci in the endangered Portuguese freshwater fish Squalius aradensis (Cyprinidae). Mol Ecol Notes 3:572–574CrossRefGoogle Scholar
  32. Mesquita N, Hänfling B, Carvalho GR, Coelho MM (2005) Phylogeography of the cyprinid Squalius aradensis and implications for conservation of the endemic freshwater fauna of southern Portugal. Mol Ecol 14:1939–1954PubMedCrossRefGoogle Scholar
  33. Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. TREE 9:373–375Google Scholar
  34. Moyer GR, Osborne M, Turner TF (2005) Genetic and ecological dynamics of species replacement in an arid-land river system. Mol Ecol 14:1263–1273PubMedCrossRefGoogle Scholar
  35. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  36. Osborne MJ, Benavides M, Alò D, Turner TF (2006) Genetic effects of hatchery propagation and rearing in the endangered Rio Grande silvery minnow, Hybognathus amarus. Rev Fish Sci 14(1):127–138CrossRefGoogle Scholar
  37. Pala I, Coelho MM (2005) Contrasting views over an hybrid complex: between speciation and evolutionary “dead-end”. Gene 347:283–294PubMedCrossRefGoogle Scholar
  38. Pritchard JK, Stephens P, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  39. Robalo JI, Doadrio I, Valente A, Almada VC (2007) Identification of ESUs in the Critically Endangered Portuguese minnow Chondrostoma lusitanicum Collares-Pereira 1980, based on a phylogeographical analysis. Cons Gen. DOI 10.1007/s10592-006-9275-xGoogle Scholar
  40. Rogers A, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–559PubMedGoogle Scholar
  41. Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003) DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  42. Saillant E, Patton JC, Ross KE, Gold JR (2004) Conservation genetics and demographic history of the endangered Cape Fear shiner (Notropis mekistocholas). Mol Ecol 13:2947–2958PubMedCrossRefGoogle Scholar
  43. Salducci MD, Martin JF, Pech N, Chappaz R, Costedoat C, Gilles A (2004) Deciphering the evolutionary biology of freshwater fish using multiple approaches – insights for the biological conservation of the Vairone (Leuciscus souffia souffia). Cons Gen 5:63–77CrossRefGoogle Scholar
  44. Salguiero P, Carvalho G, Collares-Pereira MJ, Coelho MM (2003) Microsatellite analysis of genetic population structure of the endangered cyprinid Anaecypris hispanica in Portugal: Implications for conservation. Biol Cons 109:47–56CrossRefGoogle Scholar
  45. Schneider S, Excoffier L (1999) Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089PubMedGoogle Scholar
  46. Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56:156–166Google Scholar
  47. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  48. Turner TF, Dowling TE, Broughton RE, Gold JR (2004) Variable microsatellite markers amplify across divergent lineages of cyprinid fishes (subfamily Leusicinae). Cons Gen 5:279–281CrossRefGoogle Scholar
  49. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  50. Vitalis R, Couvet D (2001) Estimation of effective population size and migration rate from one- and two-locus identity measures. Genetics 157:911–925PubMedGoogle Scholar
  51. Vyskočilová M, Šimková A, Martin J-F (2007) Isolation and characterization of microsatellites in Leuciscus cephalus (Cypriniformes, Cyprinidae) and cross-species amplification within the family Cyprinidae. Mol Ecol Notes. DOI 10.1111/j.1471–8286.2007.01813.xGoogle Scholar
  52. Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species. Act Mar Fish Rev 53(3):11–22Google Scholar
  53. Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35:235–254PubMedCrossRefGoogle Scholar
  54. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Vítor Sousa
    • 1
    • 2
  • Filipa Penha
    • 1
  • Maria J. Collares-Pereira
    • 1
  • Lounès Chikhi
    • 3
  • Maria M. Coelho
    • 1
  1. 1.Centro de Biologia Ambiental, Departamento de Biologia AnimalFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  2. 2.Instituto Gulbenkian de CiênciaOeirasPortugal
  3. 3.UMR CNRS 5174 Evolution & Diversité BiologiqueUniversité Paul SabatierToulouse cedex 4France

Personalised recommendations