Conservation Genetics

, 9:677 | Cite as

A new 2CTAB/PCI method improves DNA amplification success from faeces of Mediterranean (Barbary macaques) and tropical (lowland gorillas) primates

  • Dominique Vallet
  • Eric J. Petit
  • Sylvain Gatti
  • Florence Levréro
  • Nelly Ménard
Short Communication

Abstract

Animal genomic DNA extracts of sufficient quality to address questions about population biology or behavioural ecology can be obtained from faeces when adequate extraction procedures are used. The presence of PCR inhibitors in extract products appears generally the main factor limiting DNA amplification success. We compared DNA amplification success from faeces of a tropical primate (western lowland gorilla, Gorilla g. gorilla) and a Mediterranean primate (Barbary macaque, Macaca sylvanus) between a standardized extraction technique widely used in animals (QIAamp® stool kit), a technique mainly used in plant species (CTAB) and a new protocol (2CTAB/PCI). Amplification success varied from 51% to 97%, the highest success being reached with the 2CTAB/PCI protocol in both species.

Keywords

DNA extraction Faeces Gorillas Macaques Inhibitors 

Notes

Acknowledgments

The authors thank B. Goossens and an anonymous reviewer for useful comments on earlier version of this paper. This project received financial support from the Ministry of Environment (comity EGPN, France), the CNRS, the University of Rennes 1, the Espèces-Phares program (DG Environnement, EU), AGRECO-GEIE. We are grateful to the team of ECOFAC program (EU) for logistics and permission to work at Odzala National Park and to the Administration des Eaux et Forêts et de la Conservation des Sols (Rabat, Maroc) for permission to work in Middle Atlas. We specially thank Prof. M. Qarro (Ecole Nationale Forestière d’Ingénieurs, Rabat, Maroc) for introducing us to field sites in Middle Atlas, and C. Norais for discussions about plant extraction.

References

  1. Bradley BJ, Chambers KE, Vigilant L (2001) Accurate DNA-based sex identification of apes using non-invasive samples. Conserv Genet 2:179–181CrossRefGoogle Scholar
  2. Constable JJ, Packer C, Collins DA, Pusey AE (1995) Nuclear DNA from primate dung. Nature 373:393PubMedCrossRefGoogle Scholar
  3. Csaikl UM, Bastian H, Brettschneider R, Gauch S, Meir A, Schauerte M, Scholz F, Sperisen C, Vornam B, Ziegenhagen B (1998) Comparative analysis of different DNA extraction protocols: a fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Mol Biol 16:69–86CrossRefGoogle Scholar
  4. Di Fiore A (2005) A rapid genetic method for sex assignment in non-human primates. Conserv Genet 6:1053–1058CrossRefGoogle Scholar
  5. Dobson AJ (1990) An introduction to generalized linear models. Chapman and Hall, LondonGoogle Scholar
  6. Doulis AG, Harfouche AL, Aravanopoulos FA (2000) Rapid, high quality DNA isolation from cypress (Cupressus sempervirens L.) needles and optimization of the RAPD marker technique. Plant Mol Biol 17:1–14Google Scholar
  7. Eggert LS, Maldonado JE, Fleischer RC (2005) Nucleic acid isolation from ecological samples—animal scat and other associated materials. Method Enzymol 395:73–87CrossRefGoogle Scholar
  8. Ensminger AL, Hoffman SMG (2002) Sex identification assay useful in great apes is not diagnostic in a range of other primate species. Am J Primatol 56:129–134PubMedCrossRefGoogle Scholar
  9. Lathuillière M, Ménard N, Gautier Hion A, Crouau Roy B (2001) Testing the reliability of noninvasive genetic sampling by comparing analyses of blood and fecal samples in Barbary macaques (Macaca sylvanus). Am J Primatol 55:151–158PubMedCrossRefGoogle Scholar
  10. Launhardt K, Epplen C, Epplen JT, Winkler P (1998) Amplification of microsatellites adapted from human systems in faecal DNA of wild Hanuman langurs (Presbytis entellus). Electrophoresis 19:1356–1461PubMedCrossRefGoogle Scholar
  11. Ménard N, Qarro M (1999) Bark stripping and water availability: a comparative study between moroccan and algerian Barbary macaques (Macaca sylvanus). Rev Ecol (Terre Vie) 54:123–132Google Scholar
  12. Monteiro L, Bonnemaison D, Vekris A, Petry KG, Bonnet J, Vidal R, Cabrita J, Mégraud F (1997) Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol 35:995–998PubMedGoogle Scholar
  13. Murphy MA, Waits LP, Kendall KC (2003) The influence of diet on faecal DNA amplification and sex identification in brown bears (Ursus arctos). Mol Ecol 12:2261–2265PubMedCrossRefGoogle Scholar
  14. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol 15:8–15CrossRefGoogle Scholar
  15. Scott KD, Playford J (1996) DNA extraction technique for PCR in rain forest plant species. Biotechniques 20:974–978PubMedGoogle Scholar
  16. Sullivan KM, Manucci A, Kimpton CP, Gill P (1993) A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 15:637–641Google Scholar
  17. Whittier CA, Dhar AK, Stem C, Goodall J, Alcivar-Warren A (1999) Comparison of DNA extraction methods for PCR amplification of mitochondrial cytochrome c oxidase subunit II (COII) DNA from primate fecal samples. Biotechnol Techniq 13:771–779CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Dominique Vallet
    • 1
  • Eric J. Petit
    • 1
  • Sylvain Gatti
    • 1
  • Florence Levréro
    • 1
  • Nelly Ménard
    • 1
  1. 1.UMR 6552, Ethologie-Evolution-Ecologie, Station BiologiqueUniversity Rennes1PaimpontFrance

Personalised recommendations