Conservation Genetics

, Volume 9, Issue 1, pp 1–11 | Cite as

Molecular analysis of hybridisation between wild and domestic cats (Felis silvestris) in Portugal: implications for conservation

  • Rita OliveiraEmail author
  • Raquel Godinho
  • Ettore Randi
  • Nuno Ferrand
  • Paulo Célio Alves
Research Article


The endangered European wildcat (Felis silvestris silvestris) is represented, today, by fragmented and declining populations whose genetic integrity is considered to be seriously threatened by crossbreeding with widespread free-ranging domestic cats. Extensive and recent hybridisation has been described in Hungary and Scotland, in contrast with rare introgression of domestic alleles in Italy and Germany. In Portugal, the wildcat is now listed as VULNERABLE in the Red Book of Portuguese Vertebrates. Nevertheless, genetic diversity of populations and the eventual interbreeding with domestic cats remain poorly studied. We surveyed genetic variation at 12 autosomal microsatellites for 34 wild and 64 domestic cats collected across Portugal. Wild and domestic cats were significantly differentiated both at allele frequencies and sizes (F ST=0.11, R ST = 0.18, P < 0.001). Population structure and admixture analyses performed using Bayesian approaches also showed evidence of two discrete groups clustering wild and domestic populations. Results did not show significant genetic divergence among Northern, Central and Southern wildcats. Six morphologically identified wildcats were significantly assigned to the domestic cluster, revealing some discrepancy between phenotypic and genetic identifications. We detected four hybrids (approximately 14%) using a consensus analysis of different Bayesian model-based software. These hybrids were identified throughout all sampled areas, suggesting that hybridisation is of major concern for the appropriate implementation of wildcat conservation strategies in Portugal.


wildcat domestic cat hybridisation microsatellites admixture analysis Bayesian clustering conservation genetics 



We thank Armando Loureiro from BTVS-ICN (Wild Animal Tissue Bank, Portuguese Conservation Institute), Pedro Monterroso and Dra Maria Antonieta Ferreira for providing samples. We also thank to all veterinarians and biologists that assisted in sample collection. We are grateful to Massimo Pierpaoli for helpful comments on data analysis. Rita Oliveira is supported by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant SFRH/BD/24361/2005.


  1. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622CrossRefGoogle Scholar
  2. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229Google Scholar
  3. Barilani M, Sfougaris A, Giannakopoulos A, Mucci N, Tabarroni C, Randi E (2006) Detecting introgressive hybridisation in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conserv Genet. DOI: 10.1007/s10592-006-9174-1Google Scholar
  4. Beaumont M, Barratt EM, Gottelli D, Ktchener AC, Daniels MJ, Pritchard JK, Bruford MW (2001) Genetic diversity and introgression in the Scottish wildcat. Mol Ecol 10:319–336PubMedCrossRefGoogle Scholar
  5. Belkhir K, Borsout P, Goudet J, Chikhi L, Bonhomme F (1996–2004) Genetix, logiciel sous Windows™ pour la génétique des populations. Laboratoire Génome et Population, CNRS UPR 9060, Université de Montpellier II, Montpellier, FranceGoogle Scholar
  6. Daniels MJ, Balharry D, Hirst D, Kitchener AC, Aspinall RJ (1998) Morphological and pelage characteristics of wild living cats in Scotland: implications for defining the ‘wildcat’. J Zool 244:231–247Google Scholar
  7. Daniels MJ, Beaumont MA, Johnson PJ, Balharry D, Macdonald DW, Barratt E (2001) Ecology and genetics of wild-living cats in the north-east of Scotland and the implications for the conservation of the wildcat. J Appl Ecol 38:146–161CrossRefGoogle Scholar
  8. Eckert I, Hartl GB (2005) Conservation genetics of the European wildcat (Felis silvestris silvestris) in Germany. In: Poster presentation in symposium of biology and conservation of the European wildcat (Felis silvestris silvestris). Germany, January 21st–23rd 2005Google Scholar
  9. Excoffier L, Simouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitocondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  10. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  11. Falush D, Stephens M, Pritchard J (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  12. Fernandes M (1996) Estudo genético do gato-bravo europeu: abordagem ao problema da hibridação. Dissertação de mestrado em Conservação da Diversidade Animal. Faculdade de Ciências da Universidade de Lisboa, PortugalGoogle Scholar
  13. Ferreira PJ, Pereira I, Marques JT, Grilo C, Baltazar C, Santos-Reis M (2005) Modelling wild cat (Felis silvestris) distribution in a Portuguese Natura 2000 Site (SPA Moura Barrancos, SE Portugal). In: Poster presentation in symposium of biology and conservation of the European wildcat (Felis silvestris silvestris). Germany, January 21st–23rd 2005Google Scholar
  14. Gil-Sánchez JM, Valenzuela G, Sánchez JF (1999) Iberian wild cat Felis silvestris tartessia predation on rabbit Oryctolagus cuniculus: functional response and age selection. Acta Theriol 44:421–428Google Scholar
  15. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3).
  16. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  17. Hubbard AL, McOrist S, Jones TW, Boid R, Scott R, Easterbee N (1992) Is survival of European wildcats in Britain threatened by interbreeding with domestic cats? Biol Conserv 61:203–208CrossRefGoogle Scholar
  18. Lecis R, Pierpaoli M, Birò S, Szemethy L, Ragni B, Vercillo F, Randi E (2006) Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Mol Ecol 15:119–131PubMedCrossRefGoogle Scholar
  19. Lozano J, Virgos E, Malo A, Huertas DL, Casanovas JG (2003) Importance of scrub-pastureland mosaics on wildliving cats occurrence in a Mediterranean area: implications for the conservation of the wildcat (Felis silvestris). Biodivers Conserv 12(5):921–935CrossRefGoogle Scholar
  20. McOrist S, Kitchener AC (1996) Current threats to the European wildcat in Scotland. Biol Conserv 76(2):212Google Scholar
  21. Mennoti-Raymond MA, O´Brien S (1995) Evolutionary conservation of ten microssatellites loci in four species of FELIDAE. J Hered 86:319–322Google Scholar
  22. Menotti-Raymond MA, David VA, Lyons LA et al (1999) A genetic linkage map of microsatellite in the domestic cat (Felis catus). Genomics 57:9–23PubMedCrossRefGoogle Scholar
  23. Monterroso P, Sarmento P, Ferreras P, Alves PC (2005) Spacial distribution of the European wildcat (Felis silvestris) in Vale do Guadiana Natural Park, South Portugal. In: Poster presentation in symposium of biology and conservation of the European wildcat (Felis silvestris silvestris). Germany, January 21st–23rd 2005Google Scholar
  24. Nielsen EE, Bach LA, Kotlicki P (2006) Hybridlab (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6(4):971–973CrossRefGoogle Scholar
  25. Nowell K, Jackson P (1996) The wild cats: status survey and conservation action plan. International Union for Nature Conservation/Cat Specialist Group, Gland, SwitzerlandGoogle Scholar
  26. Pierpaoli M, Birò ZS, Herrmann M, Hupe K, Fernandes M, Ragni B, Szemethy L, Randi E (2003) Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Mol Ecol 12:2585–2598PubMedCrossRefGoogle Scholar
  27. Pires AE, Fernandes ML (2003) Last lynxes in Portugal? Molecular approaches in a pre-extinction scenario. Conserv Genet 4:525–532CrossRefGoogle Scholar
  28. Pritchard J, Wen W (2003) Documentation for structure software: version 2. Department of Human genetics, University of Chicago, USAGoogle Scholar
  29. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  30. Ragni B (1993) The crucial problem of in vivo identification of wildcat and recognition of hybrids with domestic cats. Institute of Zoology, Peruglia University, ItalyGoogle Scholar
  31. Ragni B, Possenti M (1996) Variability of coat-colour and markings system in Felis silvestris. Ital J Zool 63:285–292CrossRefGoogle Scholar
  32. Randi E, Ragni B (1991) Genetic variability and biochemical systematics of domestic and wild cat populations (Felis silvestris: FELIDAE). J Mammol 72(1):79–88CrossRefGoogle Scholar
  33. Randi E, Pierpaoli M, Beaumont M, Ragni B (2001) Genetic identification of wild and domestic cats (Felis silvestris) and their hybrids using Bayesian Clustering Methods. Mol Biol Evol 18(9):1679–1693PubMedGoogle Scholar
  34. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  35. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  36. Sambrook E, Fritsch F, Maniatis T (1989) Molecular cloning. Cold Spring Harbour Press, Cold Spring Harbour, New YorkGoogle Scholar
  37. Sarmento P (1996) Feeding ecology of the European wildcat Felis silvestris in Portugal. Acta Theriol 41:409–414Google Scholar
  38. Schauenberg P (1977) La stature du Chat forestiere Felis silvestris Schreber, 1777, et la variabilité morphologique de l’espèce. Rev Suisse Zool 84:323–337Google Scholar
  39. Stahl P, Artois M (1994) Status and conservation of the wildcat (Felis silvestris) in Europe and around the Mediterranean rim. Convention on the conservation of European wildlife and natural habitats standing committee. Council of Europe Nature and Environment Series 69, pp 1–76Google Scholar
  40. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedGoogle Scholar
  41. Vähä JPK, Primmer CR (2006) Detecting hybridization between individuals of closely related populations – a simulation study to assess the efficiency of model-based Bayesian methods to detect hybrid individuals. Mol Ecol 15:63–72PubMedCrossRefGoogle Scholar
  42. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  43. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedGoogle Scholar
  44. Wolf DE, Takebayashi N, Riesberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Rita Oliveira
    • 1
    • 2
    Email author
  • Raquel Godinho
    • 1
  • Ettore Randi
    • 3
  • Nuno Ferrand
    • 1
    • 2
  • Paulo Célio Alves
    • 1
    • 2
  1. 1.CIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairaoPortugal
  2. 2.Departamento de Zoologia e AntropologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
  3. 3.INFS, Istituto Nazionale per la Fauna SelvaticaOzzano dell’EmiliaItaly

Personalised recommendations