Conservation Genetics

, Volume 8, Issue 5, pp 1147–1162 | Cite as

Mitochondrial markers reveal deep population subdivision in the European protected spider Macrothele calpeiana (Walckenaer, 1805) (Araneae, Hexathelidae)

Original Paper

Abstract

The funnel-web spider genus Macrothele is the only representative of the mygalomorph family Hexathelidae not found in Australia or New Zealand. Its 26 species occur in Central Africa and the Oriental region. Two Macrothele species are found in Europe: M. cretica Kulczynski, 1903 from Crete, and M. calpeiana (Walckenaer, 1805) type species of the genus and the largest European spider, whose distribution extends across the south-eastern Iberian Peninsula, and in two localities of North Africa. Macrothele calpeiana is the only spider protected under European legislation. The fragmentation and destruction of the cork oak forest, with which M. calpeiana was thought to be closely associated, prompted the inclusion of this species in the Bern Convention. Some authors, however, have challenged this view and consider M. calpeiana to be neither a cork oak forest bioindicator nor an endangered species. By contrast, other observations suggest that the distribution of the species is extremely fragmented and that most local populations should be considered as threatened. In this paper, we examine aspects of the conservation status of M. calpeiana in the light of molecular phylogenetic analyses based on mitochondrial markers of sample specimens from major populations. Our data confirm the fragmented distribution of M. calpeiana and reveal high levels of genetic differentiation across its populations. Local population growth cannot be ruled out, though the lineage as a whole has apparently not undergone population growth. Lineage age estimates suggest that M. calpeiana colonized the Iberian Peninsula during the Messinian salinity crisis and that the current population fragmentation originates from the Pliocene and Pleistocene. We argue that the fragmentation and deep genetic divergence across populations, along with evolutionary singularity and endemicity in one of Europe’s main biodiversity hotspots, support the preservation of its legally protected status.

Keywords

Population fragmentation Mitochondrial genetic variation Iberian Peninsula Betic-Rifean region Spider conservation 

References

  1. Arntzen JW, García-París M (1995) Morphological and allozyme studies of midwife toads (genus Alytes) including the description of two new taxa from Spain. Contrib Zool 65:5–34Google Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MassGoogle Scholar
  3. Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744PubMedCrossRefGoogle Scholar
  4. Barea-Azcón JM, Ferrández MA, Ballesteros-Duperón E, Irurita JM (2005) Factores ambientales condicionantes de la distribución de Macrothele calpeiana (Walkenaer, 1805) a nivel de macrohábitat: implicaciones para su conservación. In: VI Jornadas del Grupo Ibérico de Aracnología. http://www.aracnologia.ennor.org/docs/actas_GIA_2005.pdf, Madrid
  5. Blasco A, Ferrández MA (1986) El género Macrothele Ausserer, 1871 (Araneae: Dipluridae) en la Península Ibérica. In: X International Congress of Arachnology, Jaca, Spain, pp 311–320Google Scholar
  6. Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, Oxford, New YorkGoogle Scholar
  7. Bond JE (2004) Systematics of the Californian euctenizine spider genus Apomastus (Araneae : Mygalomorphae : Cyrtaucheniidae): the relationship between molecular and morphological taxonomy. Invertebr Syst 18:361–376CrossRefGoogle Scholar
  8. Bond JE, Beamer DA, Lamb T, Hedin M (2006) Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region. Anim Conserv 9:145–157CrossRefGoogle Scholar
  9. Bond JE, Hedin MC, Ramirez MG, Opell BD (2001) Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Mol Ecol 10:899–910PubMedCrossRefGoogle Scholar
  10. Brandley MC, Schmitz A, Reeder TW (2005) Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of Scincid lizards. Syst Biol 54:373–390PubMedCrossRefGoogle Scholar
  11. Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304CrossRefGoogle Scholar
  12. Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci USA 91:6491–6495PubMedCrossRefGoogle Scholar
  13. Calvo-Hernández D, Santos-Lobatón MC (2001) Variabilidad morfológica de las poblaciones de Macrothele calpeiana (Walckenaer, 1805) (Araneae, Hexathelidae) en la provincia de Cádiz (España). Rev iber Aracnol 3:43–45Google Scholar
  14. Carranza S, Arnold EN (2003) History of West Mediterranean newts, Pleurodeles (Amphibia: Salamandridae), inferred from old and recent DNA sequences. Syst Biodivers 1:327–338CrossRefGoogle Scholar
  15. Carranza S, Wade E (2004) Taxonomic revision of Algero-Tunisian Pleurodeles (Caudata: Salamandridae) using molecular and morphological data. Revalidation of the taxon Pleurodeles nebulosus (Guichenot, 1850). Zootaxa 488:1–24Google Scholar
  16. Collins NM, Wells S (1987) Invertebrates in need of special protection in Europe. Augier H. Nature & Environment Series No. 35. Council of Europe, Strasbourg, pp 162Google Scholar
  17. Corzo G, Escoubas P (2003) Pharmacologically active spider peptide toxins. Cell Mol Life Sci 60:2409–2426PubMedCrossRefGoogle Scholar
  18. Crandall K, Bininda-Emonds O, Mace G, Wayne R (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  19. Drummond AJ, Rambaut A (2003) BEAST. Available from http://www.evolve.zoo.ox.ac.uk/beast/
  20. Duggen S, Hoernle K, van den Bogaard P, Rüpke L, Morgan JP (2003) Deep roots of the Messinian salinity crisis. Nature 422:602–606PubMedCrossRefGoogle Scholar
  21. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2582PubMedCrossRefGoogle Scholar
  22. Emerson B, Paradis E, Thebaud C (2001) Revealing the demographic histories of species using DNA sequences. Trends Ecol Evol 16:707–716CrossRefGoogle Scholar
  23. Emerson BC, Oromi P, Hewitt GM (2000) Colonization and diversification of the species Brachyderes rugatus (Coleoptera) on the Canary Islands: evidence from mitochondrial DNA COII gene sequences. Evolution 54:911–923PubMedGoogle Scholar
  24. Farris JS, Albert VA, Kallersjo M, Lipscomb D, Kluge AG (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12:99–124CrossRefGoogle Scholar
  25. Ferrández MA, Ferrández de Céspedes H (1996) Macrothele calpeiana. In: Inventario de los invertebrados incluidos en los Anejos de la directiva 92/43/CEE del Consejo. Icona, MadridGoogle Scholar
  26. Ferrández MA, Ferrández de Céspedes H (2001) Arachnida. In: Ramos MA, Bragado D, Fernández J (eds) Los Invertebrados no insectos de la “Directiva Hábitat” en España, Ministerio de Medio Ambiente, Dirección Genaral de la Conservación de la naturaleza, pp 133–144Google Scholar
  27. Ferrández MA, Ferrández de Céspedes H, Perucho A (1998) Macrothele calpeiana, la araña negra de los alcornocales. Quercus 146:14–18Google Scholar
  28. Foelix RF (1996) Biology of spiders. Oxford University Press, New YorkGoogle Scholar
  29. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423CrossRefGoogle Scholar
  30. Gallon RC (1994) Observations on Macrothele calpeiana (Walckenaer, 1805) in southern Iberia. J Br Tarantula Soc 1:1–12Google Scholar
  31. Gantenbein B, Largiader CR (2003) The phylogeographic importance of the Strait of Gibraltar as a gene flow barrier in terrestrial arthropods: a case study with the scorpion Buthus occitanus as model organism. Mol Phylogenet Evol 28:119–130PubMedCrossRefGoogle Scholar
  32. García-París M, Alcobendas P, Alberch P (1998) Influence of the Guadalquivir River basin on mitochondrial DNA evolution of Salamandra salamandra (Caudata: Salamandridae) from Southern Spain. Copeia 1:173–176CrossRefGoogle Scholar
  33. Giribet G, Wheeler W, Muona J (2002) DNA multiple sequence alignments. In: DeSalle R, Giribet G, Wheeler W (eds) Molecular systematics and evolution: theory and practice. Birkhaüser Verlag, Switzerland, pp 107–114Google Scholar
  34. Goloboff PA, Farris JS, Nixon KC (2003) TNT: tree analysis using new technologiesGoogle Scholar
  35. Gómez A, Lunt DH (2004) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds) Phylogeography in Southern European refugia: evolutionary perspectives on the origins and conservation of European biodiversity. Kluwer Academic Publishers, DordrechtGoogle Scholar
  36. Gómez-Zurita J, Petitpierre E, Juan C (2000) Nested cladistic analysis, phylogeography and speciation in the Timarcha goettingensis complex (Coleoptera, Chrysomelidae). Mol Ecol 9:557–570PubMedCrossRefGoogle Scholar
  37. Gutiérrez Larena B, Fuertes Aguilar J, Nieto Feliner G (2002) Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Mol Ecol 11:1965–1974PubMedCrossRefGoogle Scholar
  38. Hafernik JEJ (1992) Threats to invertebrate biodiversity: implications for conservation strategies. In: Fiedler PL, Jain SK (eds) Conservation biology: the theory and practice of nature conservation, preservation, and management. Chapman and Hall, New York and London, pp 171–195Google Scholar
  39. Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, Sherry ST (1998) Genetic traces of ancient demography. Proc Natl Acad Sci USA 95:1961–1967PubMedCrossRefGoogle Scholar
  40. Harris DJ, Batista V, Carretero MA (2004) Assessment of genetic diversity within Acanthodactylus erythrurus (Reptilia: Lacertidae) in Morocco and the Iberian Peninsula using mitochondrial DNA sequence data. Amphibia–Reptilia 25:227–232Google Scholar
  41. Hedin M, Bond JE (2006) Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. Mol Phylogenet Evol 41:454–471PubMedCrossRefGoogle Scholar
  42. Hedin MC (1997) Molecular phylogenetics at the population/species interface in cave spiders of the Southern Appalachians (Araneae: Nesticidae: Nesticus). Mol Biol Evol 14:309–324PubMedGoogle Scholar
  43. Hendrixson BE, Bond JE (2005) Testing species boundaries in the Antrodiaetus unicolor complex (Araneae: Mygalomorphae: Antrodiaetidae): “paraphyly” and cryptic diversity. Mol Phylogenet Evol 36:405–416PubMedCrossRefGoogle Scholar
  44. Hewitt G (1999) Post-glacial recolonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  45. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  46. Hewitt G (2001) Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol Ecol 10:537–549PubMedCrossRefGoogle Scholar
  47. Hung S-W, Wang T-L (2004) Arachnid envenomation in Taiwan. Ann Disast Med 3:S12–S17Google Scholar
  48. Irwin DE (2002) Phylogeographic breaks without geographic barriers to gene flow. Evol Int J Org Evol 56:2383–2394Google Scholar
  49. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRefGoogle Scholar
  50. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655CrossRefGoogle Scholar
  51. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  52. Kuo C, Avise J (2005) Phylogeographic breaks in low-dispersal species: the emergence of concordance across gene trees. Genetica 124:179–186PubMedCrossRefGoogle Scholar
  53. Lin CP, Danforth BN (2004) How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol Phylogenet Evol 30:686–702PubMedCrossRefGoogle Scholar
  54. Lucas H (1839) Arachnides, myriapodes et thysanoures. In: Barker-Webb, Berthelod S (eds) Histoire naturelle des îles Canaries, II, 2e partie: Zoologie. Paris, pp 19–52Google Scholar
  55. Martínez-Solano I, Goncalves HA, Arntzen JW, Garcia-Paris M (2004) Phylogenetic relationships and biogeography of midwife toads (Discoglossidae: Alytes). J Biogeogr 31:603–618Google Scholar
  56. Medail F, Quezel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann MO Bot Gard 84:112–127CrossRefGoogle Scholar
  57. Medail F, Quezel P (1999) Biodiversity hotspots in the Mediterranean basin: setting global conservation priorities. Conserv Biol 13:1510–1513CrossRefGoogle Scholar
  58. Mickevich MF, Farris JS (1981) The implications of incongruence in Menidia. Syst Zool 30:351–370CrossRefGoogle Scholar
  59. Moore WS (1995) Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees. Evolution 49:718–726CrossRefGoogle Scholar
  60. Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375CrossRefGoogle Scholar
  61. Myers N, Mittermeier RA, Mittermeier CC, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858Google Scholar
  62. Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67PubMedCrossRefGoogle Scholar
  63. Palmer M, Cambefort Y (2000) Evidence for reticulate palaeogeography: beetle diversity linked to connection–disjunction cycles of the Gibraltar strait. J Biogeogr 27:403–416CrossRefGoogle Scholar
  64. Perry L (2002) Captive breeding of funnelweb spider Macrothele calpeiana (Walckenaer, 1805). J Br Tarantula Soc 17:113–121Google Scholar
  65. Platnick NI (2005) The world spider catalog. American Museum of Natural History, online at http://www.research.amnh.org/entomology/spiders/catalog81–87/INTRO1.html, New York
  66. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  67. Prager EM, Wilson AC (1988) Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J Mol Evol 27:326–335PubMedCrossRefGoogle Scholar
  68. Rambaut A, Drummond AJ (2003) TRACER. Available from http://www.evolve.zoo.ox.ac.uk/tracer/
  69. Rapoport EH (1982) Areography: geographical strategies of species. Pergamon Press, OxfordGoogle Scholar
  70. Raven RJ (1980) The evolution and biogeography of the mygalomorph spider family Hexathelidae (Araneae, Chelicerata). J Arachnol 8:251–266Google Scholar
  71. Ribera I (2000) Biogeography and conservation of Iberian water beetles. Biol Conserv 92:131–150CrossRefGoogle Scholar
  72. Roest WR, Srivastava SP (1991) Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present. Geology 19:613–616CrossRefGoogle Scholar
  73. Ronquist F, Huelsenbeck JP, van der Mark P (2005) MyBayes 3.1 manual. online at http://www.mrbayes.csit.fsu.edu/wiki/index.php/Manual
  74. Ryder O (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10CrossRefGoogle Scholar
  75. Sanger F, Nicklen S, Coulsen AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5468PubMedCrossRefGoogle Scholar
  76. Sanz de Galdeano CM (1996) Tertiary tectonic framework of the Iberian peninsula. In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain. Cambridge University Press, Cambridge, pp 9–14Google Scholar
  77. Scheller J, Guhrs K-H, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19:573–577PubMedCrossRefGoogle Scholar
  78. Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089PubMedGoogle Scholar
  79. Selden PA, Shear WA, Bonamo PM (1991) A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology 34:241–281Google Scholar
  80. Shear WA, Palmer JM, Coddington JA, Bonamo PM (1989) A Devonian spinneret: early evidence of spiders and silk use. Science 246:479–481CrossRefGoogle Scholar
  81. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116Google Scholar
  82. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  83. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  84. Snazell RG (1986) The spider genus Macrothele Ausserer in Spain (Araneae, Dipluridae). Bull Br Arachnol Soc 17:80–83Google Scholar
  85. Snazell RG, Allison R (1989) The genus Macrothele Ausserer (Araneae; Hexathelidae) in Europe. Bull Br Arachnol Soc 8:65–72Google Scholar
  86. Sollod B, Wilson D, Zhaxybayeva O, Gogarten J, Drinkwater R, King G (2005) Were arachnids the first to use combinatorial peptide libraries. Peptides 26:131–139PubMedCrossRefGoogle Scholar
  87. Swofford DL (2001) PAUP*: Phylogenetic analysis using parsimony (and other methods). Sinauer Associates, Sunderland, MAGoogle Scholar
  88. Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the humans and apes. Evolution 37:221–244CrossRefGoogle Scholar
  89. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  90. Valdés B (1991) Andalucía and the Rif. Floristic links and a common Flora. Bot Chron 10:117–124Google Scholar
  91. Van Helsdingen PJ (1993) Can Macrothele calpeiana (Walckenaer) (Araneae, Hexathelidae) be used as a bio-indicator? Bull Soc Neuch Sci Nat 116:253–258Google Scholar
  92. Van Helsdingen PJ, Decae A (1992) Ecolgy, distribution and vulnerability of Macrothele calpeiana (Walckenaer) (Araneae, Hexathelidae). Tijdschr Entomol 135:169–178Google Scholar
  93. Vargas JM, Real R, Guerrero JC (1998) Biogeograpahical regions of the Iberian peninsula based on freshwater fish and amphibian distributions. Ecography 21:371–382CrossRefGoogle Scholar
  94. Verdú JR, Galante E (2005) Libro Rojo de los Invertebrados de España. Dirección General para la Biodiversidad, Ministerio de Medio Ambiente, MadridGoogle Scholar
  95. Wiens JJ, Penkrot TA (2002) Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst Biol 51:69–91PubMedCrossRefGoogle Scholar
  96. Wise DH (1993) Spiders in ecological webs. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  97. Young ND, Healy J (2002) GapCoder. http://www.trinity.edu/nyoung/GapCoder/Download.html
  98. Zeng X, Xiao Q, Liang S (2003) Purification and characterization of raventoxin-I and raventoxin-III, two neurotoxic peptides from the venom of the spider Macrothele raveni. Toxicon 41:651–656PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Departament de Biologia AnimalUniversitat de BarcelonaBarcelonaSpain
  2. 2.Sociedad para el Estudio y la Conservación de las ArañasMadridSpain

Personalised recommendations