Advertisement

Conservation Genetics

, Volume 8, Issue 3, pp 555–563 | Cite as

Small edge populations at risk: genetic diversity of the green lizard (Lacerta viridis viridis) in Germany and implications for conservation management

  • Manja U. BöhmeEmail author
  • Norbert Schneeweiß
  • Uwe Fritz
  • Martin Schlegel
  • Thomas U. Berendonk
Original Paper

Abstract

Edge and central populations can show great differences regarding their genetic variation and thereby also in their probability of extinction. This fact might be of great importance for the conservation strategies of endangered species. In this study we examine the level of microsatellite variability within three threatened edge populations of the green lizard subspecies Lacerta viridis viridis (Laur.) in Brandenburg (Germany) and compare the observed variation to other edge and central populations within the northern species range. We demonstrate that the northernmost edge populations contain less genetic variation in comparison to the central population. However, there were no observable significant differences to the other edge population included in this study. Surprisingly, we observed a high genetic differentiation in a small geographical range between the three endangered populations in Brandenburg, which can be explained by processes like fragmentation, isolation, genetic drift and small individual numbers within these populations. We also detected unique genetic variants (alleles), which only occurred in these populations, despite a low overall genetic variation. This study demonstrates the potential of fast evolving markers assessing the genetic status of endangered populations with a high resolution. It also illustrates the need for a comparative analysis of different regions within the species range, achieving a more exact interpretation of the genetic variation in endangered populations. This will aid future management decisions in the conservation of genetic diversity in threatened species.

Keywords

Genetic variation Microsatellites Isolated population Lacerta viridis 

Notes

Acknowledgements

We are very grateful to M. Stein for his extraordinary help and cooperation in the field. We thank the Naturschutzstation Rhinluch (Landesumweltamt Brandenburg) for the cooperation within the project and for the help with the required permit. We also thank the ministry of Agriculture, Environmental protection and Regional planning for the permit to study the endangered population in Brandenburg. Furthermore we thank J. Moravec and J. Vörös for their help regarding the Czech and Hungarian samples. We thank K. Lampert and the two anonymous reviewers for the helpful comments on the manuscript and A.D. Sommerfeldt for improving the language of a previous draft. This study was supported by the Heinz Sielmann Stiftung and the work of Manja Böhme was supported by the Evangelische Studienwerk Villigst e.V.

References

  1. Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265PubMedCrossRefGoogle Scholar
  2. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkGoogle Scholar
  3. Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165PubMedCrossRefGoogle Scholar
  4. Böhme MU, Berendonk TU, Schlegel M (2005) Isolation of new microsatellite loci from the Green Lizard (Lacerta viridis viridis). Mol Ecol Notes 5:45–47CrossRefGoogle Scholar
  5. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  6. DeSalle R, Amato G (2004) The expansion of conservation genetics. Nat Rev Genet 5:702–712PubMedCrossRefGoogle Scholar
  7. Edenhamn P, Hoggren M, Carlson A (2000) Genetic diversity and fitness in peripheral and central populations of the European tree frog Hyla arborea. Hereditas 133:115–122PubMedCrossRefGoogle Scholar
  8. Elbing K (2000) Fortpflanzungsbiologie und Populationsökologie der Smaragdeidechse (Lacerta viridis, Laurenti, 1768) in ihren brandenburgischen Reliktvorkommen. PhD thesis, Universität Bremen, GermanyGoogle Scholar
  9. Elbing K (2001a) Die Smaragdeidechsen-zwei (un)gleiche Schwestern. Laurenti Verlag, BochumGoogle Scholar
  10. Elbing K (2001b) Das Artenschutzprogramm “Smaragdeidechse” Lacerta viridis (Laurenti, 1768) des Landes Brandenburg. Mertensiella 13:269–278Google Scholar
  11. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  12. Favre L, Balloux F, Goudet J, Perrin N (1997) Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proc R Soc B 264:127–132PubMedCrossRefGoogle Scholar
  13. Frankham R (1995) Inbreeding and extinction: island populations. Conserv Biol 12:665–675CrossRefGoogle Scholar
  14. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  15. Goudet J (1995) Fstat (version 1.2): a computer program to calculate Fstatistics. Journal of Heredity 86:485–486 Version 2.9.3 available from http://www.unil.ch/izea/softwares/fstat.html [accessed March 2005]Google Scholar
  16. Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114PubMedCrossRefGoogle Scholar
  17. Gullberg A, Tegelstrom H, Olsson M (1997) Microsatellites in the sand lizard (Lacerta agilis): description, variation, inheritance, and applicability. Biochem Genet 35:281–295PubMedCrossRefGoogle Scholar
  18. Hartl DL, Clark GC (1997) Principles of population genetics, 3rd edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  19. Hecht G (1930) Die märkische Smaragdeidechse, Lacerta viridis (Laur.) subspec. brandenburgensis subspec. nov. Das Aquarium 1930:62Google Scholar
  20. Hewitt GM (2001) Speciation, hybrid zones and phylogeography – or seeing genes in space and time. Mol Ecol 10:537–549PubMedCrossRefGoogle Scholar
  21. Hofman AA, Blows MW (1994) Species borders: ecological and evolutionary perspectives. Trends Ecol Evol 9:223–227CrossRefGoogle Scholar
  22. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  23. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17(5):230–241CrossRefGoogle Scholar
  24. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738PubMedGoogle Scholar
  25. Kirmse W (1990) Die Smaragdeidechse in Brandenburg: Bestand und Schutzmaßnahmen. Die Eidechse 1:10–12Google Scholar
  26. Kirmse W (1994) Zur aktuellen Situation der brandenburgischen Smaragdeidechse (Lacerta v. viridis). Die Eidechse 5:2–4Google Scholar
  27. Lammi A, Siikamaki P, Mustajarvi K (1999) Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13:1069–1078CrossRefGoogle Scholar
  28. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460PubMedCrossRefGoogle Scholar
  29. Le Galliard JF, Ferriere R, Clobert J (2005) Effect of patch occupancy on immigration in the common lizard. J Anim Ecol 74:241–249CrossRefGoogle Scholar
  30. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760CrossRefGoogle Scholar
  31. Mertens R, Schnurre O (1946) Zur Eidonomie, Taxonomie und Ökologie der norddeutschen Smaragdeidechse. Senkenbergia 27:25–52Google Scholar
  32. Mertens R, Schnurre O (1949) Eidonomische und ökologische Studien an Smaragdeidechsen Deutschlands. Abh Senckenb Nat Gesell 481:1–28Google Scholar
  33. Moritz C (1999) Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130:217–228CrossRefGoogle Scholar
  34. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New YorkGoogle Scholar
  35. Peakall R, Smouse PE (2006) GENALEX 6: Genetic Analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  36. Peters G (1970) Studien zur Taxonomie, Verbreitung und Ökologie der Smaradeidechsen IV. Zur Ökologie und Geschichte der Populationen von Lacerta v. viridis (Laurenti) im mitteleuropäischen Flachland. Veröff Bez Mus Potsdam 21:49–119Google Scholar
  37. Petrosyan VG, Tokarskaya ON, Malysheva DN, Ryskov AP (2003) Quantitative assessment of gene diversity and between—population differentiation of parthenogenetic lizard of the genus Darevskia using Mini- and Microsatellite DNA markers. Russ J Gen 39:1201–1207CrossRefGoogle Scholar
  38. Pinho C, Sequeira F, Godinho R, Harris DJ, Ferrand N (2004) Isolation and characterization of nine microsatellite loci in Podarcis bocagei (Squamata: Lacertidae). Mol Ecol Notes 4:286–288CrossRefGoogle Scholar
  39. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  40. Raymond M, Rousset F (1995) Genepop (version1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  41. Ryberg K, Olsson M, Wapstra E, Madsen T, Anderholm S, Ujvari B (2004) Offspring-driven local dispersal in female sand lizards (Lacerta agilis). J Evol Biol 17:1215–1220PubMedCrossRefGoogle Scholar
  42. Schneeweiß N (2001) Aspekte der Entwicklung und des Ausbreitungsverhaltens von Smaragdeidechsen (Lacerta viridis viridis) in einem Ansiedlungsversuch in Brandenburg. Mertensiella 13:229–240Google Scholar
  43. Schneeweiß N, Krone A, Baier R (2004) Rote Listen und Artenlisten der Lurche (Amphibia) und Kriechtiere (Reptilia) des Landes Brandenburg. Natur Landschaftspfl Brand 13(4):35SGoogle Scholar
  44. Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9:1517–1528PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Manja U. Böhme
    • 1
    Email author
  • Norbert Schneeweiß
    • 2
  • Uwe Fritz
    • 3
  • Martin Schlegel
    • 1
  • Thomas U. Berendonk
    • 1
  1. 1.University of Leipzig, Biology II, Molecular Evolution and Animal SystematicsLeipzigGermany
  2. 2.Landesumweltamt Brandenburg, Naturschutzstation RhinluchLinumGermany
  3. 3.Museum of Zoology, Natural History State Collections DresdenDresdenGermany

Personalised recommendations