Conservation Genetics

, Volume 8, Issue 2, pp 293–303 | Cite as

Genetic diversity within and between remnant populations of the endangered calcareous grassland plant Globularia bisnagarica L.

  • O. HonnayEmail author
  • D. Adriaens
  • E. Coart
  • H. Jacquemyn
  • I. Roldan-Ruiz
Original Paper


Changes in agricultural production methods over the last century have caused a massive reduction and fragmentation of the area of European semi-natural grasslands. It remains unclear whether small and isolated grassland fragments can support viable plant populations in a sustainable way. In our study area in southern Belgium, the extent of calcareous grasslands was reduced from c. 650 ha in 1775 to less than 30 ha in 2004. We used AFLP markers to quantify the effects of present and historical grassland fragmentation on the genetic structure of 27 populations of the rare perennial plant species Globularia bisnagarica. Given the mixed breeding system of the species and the relatively small area of the studied system, the populations were characterized by high genetic differentiation (F st range: 0.42–0.48; Φst=0.53). A Mantel test revealed significant isolation by distance of the populations. Average within population genetic diversity, measured as expected heterozygosity or gene diversity, was low (H j =0.081) and was negatively related to population isolation. This suggests more gene flow into less isolated populations. Population size and local habitat characteristics did not significantly influence population genetic diversity. Both, high selfing rates in G. bisnagarica and a population genetic response to habitat fragmentation may explain our findings. Finally, a clear geographical clustering was observed, with cluster membership partially explainable by historical grassland connectivity. If populations indeed started to differentiate after fragmentation, this process was not (yet) strong enough to erase the genetic similarity between fragments that historically belonged to the same large grassland fragment.


AFLP Belgium Gene flow Habitat fragmentation Habitat connectivity Historical landscape Semi-natural grassland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This manuscript is part of the BIOCORE-research project which is supported by Federal Belgian Science Policy (formerly OSTC). Thanks to Tom Neels, Eric van Beek, and Jan Butaye for help with the fieldwork and to Sabine van Glabeke and Nancy Mergan for excellent assistance with laboratory work. HJ and DA have, respectively, a postdoctoral and doctoral fellowship from the Flemish Fund for Scientific Research (FWO). Thanks to L. Woué , L-M. Delescaille and forester ir. J-P. Scohy for their kind cooperation with BIOCORE.


  1. Bruun HH (2000) Patterns of species richness in dry grassland patches in an agricultural landscape. Ecography 23: 641–650CrossRefGoogle Scholar
  2. Bobbink R, Willems JH (1991) Impact of different cutting regimes on the performance of Brachypodium pinnatum in Dutch chalk grassland. Biol Conserv 56:1–21CrossRefGoogle Scholar
  3. Butaye J, Honnay O, Adriaens D, Delescaille LM, Hermy M (2005) Phytosociology and phytogeography of the calcareous grasslands on Devonian limestone in Southwest Belgium. Belgian J Bot 138:24–38Google Scholar
  4. Couvet D (2002) Deleterious effects of restricted gene flow in fragmented populations. Conserv Biol 16:369–376CrossRefGoogle Scholar
  5. Decocq O, Delescaille LM, Dewitte T (2004) Une origine agropastorale. In: Colmant L (ed) Les Pelouses calcicoles en Région Wallonne. Entente Nationale pour la Protection de la Nature, Vierves, pp 3–16Google Scholar
  6. Ellstrand N, Elam D (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol System 24:217–242CrossRefGoogle Scholar
  7. Fischer M, Stocklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737CrossRefGoogle Scholar
  8. Harrison S, Hastings A (1996) Genetic and evolutionary consequences of metapopulation structure. Trends Ecol Evol 11:180–183CrossRefGoogle Scholar
  9. Hensen I, Oberprieler C, Wesche K (2005) Genetic structure, population size, and seed production of Pulsatilla vulgaris Mill. (Ranunculaceae) in Central Germany. Flora 200:3–14Google Scholar
  10. Honnay O, Bossuyt B (2005) Prolonged clonal growth: escape route or route to extinction?. Oikos 108:427–432CrossRefGoogle Scholar
  11. Honnay O, Coart E, Butaye J, Adriaens D, Roldan-Ruiz I (2006) Low effects of present and historical landscape configuration on population genetic structure of Anthyllis vulneraria. Biol Conserv 127:411–419CrossRefGoogle Scholar
  12. Höllander K, Jäger EJ (1998) Wuchsform und lebensgeschichte von Globularia Bisnagarica L. (G. punctata Lapeyr., Globulariaceae). Hercynia 31:143–171Google Scholar
  13. Hooftman DAP, Billeter RC, Schmid B, Diemer M (2004) Genetic effects of habitat fragmentation on common species of Swiss fen meadows. Conserv Biol 19:1043–1051CrossRefGoogle Scholar
  14. Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among populations of outcrossing buffalograss (Buchloë dactyloides (Nutt.) Engelm). Theor Appl Genet 86:927–934CrossRefGoogle Scholar
  15. Klotz S, Kühn I, Durka W (2002) BIOLFLOR – Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. – Schriftenreihe für Vegetationskunde 38, Bundesamt für Naturschutz. Bonn.Google Scholar
  16. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  17. Kleijn D, Steinger T (2002) Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. J Ecol 90:360–370CrossRefGoogle Scholar
  18. Krauss J, Klein A-M, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers Conserv 13:1427–1439CrossRefGoogle Scholar
  19. Lammi A, Siikamaki P, Mustajarvi K (1999) Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13:1069–1078CrossRefGoogle Scholar
  20. Leimu R, Mutikainen P (2005) Population history, mating system, and fitness variation in a perennial herb with a fragmented distribution. Conserv Biol 19:349–356CrossRefGoogle Scholar
  21. Lienert J, Fischer M, Schneller J, Diemer M (2002) Isozyme variability of the wetland specialist Swertia perennis (Gentianaceae) in relation to habitat size, isolation, and plant fitness. Am J Bot 89:801–811Google Scholar
  22. Lindborg A, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845Google Scholar
  23. Llorens TM, Ayre DJ, Whelan RJ (2004) Evidence for ancient genetic subdivision among recently fragmented populations of the endangered shrub grevillea caleyi (Protaceae). Heredity 92:519–526PubMedCrossRefGoogle Scholar
  24. Lynch M, Milligan BG (1994) Analysis of population genetic-structure with RAPD markers. Mol Ecol 3:91–99PubMedGoogle Scholar
  25. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145CrossRefGoogle Scholar
  26. Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114CrossRefGoogle Scholar
  27. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  28. Pluess AR, Stocklin J (2004) Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am J Bot 91:2013–2021Google Scholar
  29. Poschlod P, WallisDeVries MF (2002) The historical and socio-economic perspective of calcareous grasslands – lessons from the distant and recent past. Biol Conserv 104:361–376CrossRefGoogle Scholar
  30. Prentice HC, Lonn M, Rosquist G, Ihse M, Kindstrom. M (2006) Gene diversity in a fragmented population of Briza media: grassland continuity in a landscape context. J Ecol. 94:87–97Google Scholar
  31. Prober SM, Brown AHD (1994) Conservation of the grassy white box woodlands: population genetics and fragmentation of Eucalyptus albens. Conserv Biol 8:1003–1013CrossRefGoogle Scholar
  32. Raijmann LL, Vanleeuwen NC, Kersten R, Oostermeijer JGB, Dennijs HCM, Menken SBJ (1994) Genetic-variation and outcrossing rate in relation to population size in Gentiana pneumonanthe. Conserv Biol 8:1014–1026CrossRefGoogle Scholar
  33. Richards CM (2000) Inbreeding depression and genetic rescue in a plant metapopulation. Am Nat 155:383–394PubMedCrossRefGoogle Scholar
  34. Roldán-Ruiz I, Dendauw J, van Bockstaele E, Depickere A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrass (Lolium spp.). Mol Breed 6:125–134CrossRefGoogle Scholar
  35. Schaal BA, Leverich WJ (1996) Molecular variation in isolated plant populations. Plant Species Biol 11:33–40CrossRefGoogle Scholar
  36. Schmidt K, Jensen K (2000) Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproductive components. Am J Bot 87:678–689PubMedCrossRefGoogle Scholar
  37. Sork VL, Nason J, Campbell DR, Fernandez JF (1999) Landscape approaches to historical and contemporary gene flow in plants. Trends Ecol Evol 14:219–224PubMedCrossRefGoogle Scholar
  38. Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 12:432–440CrossRefGoogle Scholar
  39. Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496PubMedCrossRefGoogle Scholar
  40. van Treuren R., Bijlsma R, van Delden W, Ouborg NJ (1991) The significance of genetic erosion in the process of extinction. I. Genetic differentiation in salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66:181–189Google Scholar
  41. van Rossum F, Campos de Sousa S, Triest L (2004) Genetic consequences of habitat fragmentation in an agricultural landscape on the common Primula veris and comparison with its rare congener, P. vulgaris. Conserv Genet 5:231–245CrossRefGoogle Scholar
  42. Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151PubMedCrossRefGoogle Scholar
  43. Volis S, Anikster Y, Olsvig-Whittaker L, Mendlinger S (2004) The influence of space in genetic–environmental relationships when environmental heterogeneity and seed dispersal occur at similar scale. Am Nat 163:312–327PubMedCrossRefGoogle Scholar
  44. Vos P, Hogers R, Bleeker M, Reijmans M, van de Lee R, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  45. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418CrossRefGoogle Scholar
  46. Young AG, Brown AHD, Zich FA (1999) Genetic structure of fragmented populations of the endangered Daisy Rutidosis leptorrhynchoides. Conserv Biol 13:256–265CrossRefGoogle Scholar
  47. Zhivotovski LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • O. Honnay
    • 1
    Email author
  • D. Adriaens
    • 2
  • E. Coart
    • 3
  • H. Jacquemyn
    • 2
  • I. Roldan-Ruiz
    • 3
  1. 1.Biology Department, Division of Plant Ecology and SystematicsUniversity of LeuvenHeverleeBelgium
  2. 2.Division of Forest, Nature and Landscape ResearchUniversity of LeuvenHeverleeBelgium
  3. 3.Department of Plant Genetics and Breeding (CLO-DvP)Agricultural Research CentreMelleBelgium

Personalised recommendations