Conservation Genetics

, Volume 7, Issue 3, pp 439–448 | Cite as

Genetic diversity, phylogeny and conservation of the Javan rhinoceros (Rhinoceros sondaicus)

  • Prithiviraj Fernando
  • Gert Polet
  • Nazir Foead
  • Linda S. Ng
  • Jennifer Pastorini
  • Don J. Melnick
Article

Abstract

With a total population of less than 60 individuals limited to two locations, the Javan rhinoceros is perhaps the most endangered large mammal on earth. Although species specific information is crucial to its conservation, its precarious status, habitat inaccessibility, and behavioral adaptations pose major obstacles to its study. Here we report on the first genetic analysis of the two extant populations, in Ujung Kulon, Indonesia, and Cat Tien, Vietnam, and discuss their conservation. As its critically endangered status precluded invasive sampling, we extracted DNA from dung, amplifying and sequencing segments of the mtDNA 12S rRNA gene and the non-coding D-loop. Divergence between Javan rhinos from Ujung Kulon and Cat Tien was similar to that between recognized subspecies of African rhinos, and exceeded that between Sumatran rhinos. The Ujung Kulon and Cat Tien populations represent separate Evolutionary Significant Units, advocating independent management. However, given the precariousness of the Cat Tien population, demographic considerations may override genetic issues in the short term. Genetic diversity of Javan rhinos was low and population expansion in the immediate future will be critical for its survival.

Keywords

Javan rhinoceros Rhinoceros sondaicus conservation genetics mtDNA sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to express our thanks to Mark Atkinson and the ‚Wilds’ for the Indian rhino samples, San Diego Zoo and Eric Harley for the white rhino samples, David Cummings, Raoul DuToit, and the Wildlife Department of Zimbabwe, and Perez Olindo, David Western, and the Department of National Parks and Wildlife Management of Kenya for black rhino samples from Zimbabwe and Kenya, Juan Carlos Morales, Mahedi Andau, William Karesh, and ‚Taman Safari’ for samples of Sumatran rhinos. We would also like to thank the Department of Forestry in Indonesia (PHPA), Ridwan Setiawan, Adhi Rachmat Hariyadi and Adji Santoso, for assistance in collecting samples from Ujung Kulon, and the rangers of Cat Tien National Park, for collecting the samples from Cat Tien. All samples were imported according to CITES regulations with permits from the exporting and importing countries. This study was funded by grants from the Rhinoceros and Tiger Conservation Fund of the United States Fish and Wildlife Service.

References

  1. Fernando P, Pfrender ME, Encalada SE, Lande R (2000) Mitochondrial DNA variation, phylogeography and population structure of the Asian elephant. Heredity 84: 362–372PubMedCrossRefGoogle Scholar
  2. Fernando P, Vidya TNC, Rajapakse C, Dangolla A, Melnick DJ (2003) Reliable noninvasive genotyping: fantasy or reality?. J. Hered. 94: 115–123PubMedCrossRefGoogle Scholar
  3. Foose TJ, van Strien NJ (eds) (1995) Asian Rhinos. Newsletter of the IUCN Asian Rhino Specialist Group, 1.Google Scholar
  4. Foose TJ, van Strien NJ (eds) (1997) Asian Rhinos. Status Survey and Conservation Action Plan. IUCN/SSC Asian Rhino Specialist Group. IUCN, Gland, SwitzerlandGoogle Scholar
  5. Frankham R (2005) Genetics and extinction. Biol. Cons. 126: 131–140CrossRefGoogle Scholar
  6. Groves CP (1967) On the rhinoceroses of south-east Asia. Säugetierkundliche Mitteilungen 15: 221–237Google Scholar
  7. Groves CP, Guerin C (1980) Le Rhinoceros sondaicus annamiticus (Mammalia, Perissodactyla) d’Indochine: Distinction taxonomique et anatomique; relations phyletiques. Geobios 13(2): 199–208CrossRefGoogle Scholar
  8. Hartl DL, Clark AG (1989) Principles of Population Genetics, 2nd edn. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  9. Holloway JD, Hall R (1998) SE Asian geology and biogeography: an introduction. In: Biogeography and Geological Evolution of SE Asia (eds. Hall R, Holloway JD), pp. 1–23, Backhuys Publishers, Leiden, The Netherlands.Google Scholar
  10. IUCN (2003) 2003 IUCN Red List of Threatened Species. http://www.redlist.org
  11. Kohn M, Wayne RK (1997) Facts from feces revisited. TREE 12: 223–227Google Scholar
  12. Lande R (1988) Genetics and demography in biological conservation. Science 241: 1455–1460PubMedCrossRefGoogle Scholar
  13. Morales JC, Andau PH, Supriatna J, Zainuddin Z, Melnick DJ (1997) Mitochondrial DNA variability and conservation genetics of the Sumatran rhinoceros. Conserv. Biol. 11: 539–543CrossRefGoogle Scholar
  14. Polet G, Tran VM, Nguyen XD, Bui HM, Baltzer M (1999) The Javan rhinoceros, Rhinoceros sondaicus annamiticus, of Cat Tien National Park, Vietnam: current status and management implications. Pachyderm 27: 34–48Google Scholar
  15. Raloff J (1999) Rarest of the rare, remote-camera images and dung-heap data give portrait of Vietnam’s rhinos. Science News 156: 153–156CrossRefGoogle Scholar
  16. Ramono WS, Santiapillai C, MacKinnon K (1993) Conservation and management of Javan rhino (Rhinoceros sondaicus) in Indonesia. In: Ryder OA (ed) Rhinoceros Biology and Conservation. Zoological Society of San Diego, California, pp. 265–273Google Scholar
  17. Sadjudin HR (1992) Status and distribution of the Javan rhino in Ujung Kulon National Park, West Java. Trop. Biodivers. 1(1): 1–10Google Scholar
  18. Santiapillai C, Suprahman H (1986) The proposed translocation of the Javan rhinoceros Rhinoceros sondaicus. Biol. Conserv. 38: 11–19CrossRefGoogle Scholar
  19. Santiapillai C, Giao PM, Dung VV (1993) Conservation and management of Javan rhino (Rhinoceros sondaicus annamiticus) in Vietnam. Tiger Paper 20: 7–14Google Scholar
  20. Schaller GB, Dang NX, Thuy LD, Son VT (1990) Javan rhinoceros in Vietnam. Oryx 24(2): 77–80Google Scholar
  21. Springer MS, Douzery E (1996) Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J. Mol. Evol. 43: 357–373PubMedCrossRefGoogle Scholar
  22. Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. TREE 14: 401–405PubMedGoogle Scholar
  23. Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  24. Titus AT, Larson A (1996) Molecular phylogenetics of desmognathine salamanders (Caudata: Plethodontidae): A reevaluation of evolution in ecology, life history and biology. Syst. Biol. 45: 451–472CrossRefGoogle Scholar
  25. Tougard C, Delefosse T, Hanni C, Montgelard C (2001) Phylogenetic relationships of the five extant rhinoceros species (Rhinocerotidae, Perrisodactyla) based on mitochondrial cytochrome b and 12S rRNA genes. Mol. Phylogenet. Evol. 19: 34–44PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Prithiviraj Fernando
    • 1
    • 2
  • Gert Polet
    • 3
  • Nazir Foead
    • 4
  • Linda S. Ng
    • 2
  • Jennifer Pastorini
    • 1
    • 5
  • Don J. Melnick
    • 2
    • 6
  1. 1.Centre for Conservation and ResearchRajagiriyaSri Lanka
  2. 2.Center for Environmental Research and ConservationColumbia UniversityNew YorkUSA
  3. 3.World Wide Fund for Nature – Cat Tien National Park Conservation ProjectHanoiVietnam
  4. 4.World Wide Fund for Nature-IndonesiaJakartaIndonesia
  5. 5.Anthropologisches Institut, Universität ZürichZürichSwitzerland
  6. 6.Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkUSA

Personalised recommendations