Conservation Genetics

, Volume 7, Issue 2, pp 185–195 | Cite as

The declining Spadefoot toad, Pelobates fuscus (Pelobatidae): paleo and recent environmental changes as a major influence on current population structure and status

  • Christophe EggertEmail author
  • Dan Cogălniceanu
  • Michael Veith
  • Georg Dzukic
  • Pierre Taberlet


Populations of the European Spadefoot toad (Pelobates fuscus) have experienced recent declines all over Europe, but these appear to be more intense in north and western Europe. Due to the toad’s fossorial nature and specific habitat requirements, environmental conditions have played a major role in structuring current populations. We examined the phylogeographic structure in P. fuscus from 16 localities throughout Europe using mitochondrial cytochrome b gene sequence analysis. Sequence divergence among haplotypes was low (0.54±0.15%). Three very closely related haplotypes occupy northern and western parts of Europe whereas 12 others were observed among samples from south-eastern Europe, including the Balkans. Our results suggest that toads only recently colonized the northern and western parts of Europe following glacial retreat. This expansion probably took place in steppic-like areas during the younger Dryas cold interval, about 12,900–11,500 years ago. Restricted gene flow with an isolation-by-distance population structure characterises a major part of its distribution range. Based on our results we suggest that the northern and western lineages should be considered as distinct conservation units, while the south-eastern populations from the refugial areas, where nearly all genetic polymorphism occurs and populations appear less vulnerable, should receive special attention.


amphibian decline Dryas global changes low polymorphism mtDNA nested clade phylogeographic analysis Pelobates fuscus Spadefoot toad 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was mainly supported by the French Office National des Forêts and Electricité de France. One of the author (G.D.) is partly supported by the Ministry of Science, Technology and Development of Serbia (project title “Integrative study of amphibians and reptiles of the central Balkans”, grant No. 1623). We thank C. LeBihan (ONF), R. Guyétant, and A. Ribéron for assistance and R. Jehle, E. Ripfl, A. Bitz, B. Ujvari, M. Puky, A. Stumpel, V. Lacoste and K. Grossenbacher for providing us with tissue samples.


  1. Adams JM, Faure H (eds) (1997). QEN members. Review and Atlas of Palaeovegetation: Preliminary land ecosystem maps of the world since the Last Glacial Maximum. Oak Ridge National Laboratory, TN, USA, Scholar
  2. Andreone F, Fortina R, Chiminello A (1993). Natural History, Ecology and Conservation of the Italian Spadefoot Toad, Pelobates fuscus insubricus. Societa Zoologica La Torbiera, NovaraGoogle Scholar
  3. Avise JC (1992). Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63: 62–76CrossRefGoogle Scholar
  4. Avise JC (2000). Phylogeography. The History and Formation of Species, Harvard University Press, CambridgeGoogle Scholar
  5. Avise JC, Walker D, Johns GC (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. Roy. Soc. Lond. B 265: 1707–1712CrossRefGoogle Scholar
  6. Baillie JEM, Hilton-Taylor C, Stuart SN (eds.) (2004) 2004 IUCN Red List of Threatened Species A Global Species Assessment. IUCN, Gland, Switzerland and Cambridge, UK, 191 ppGoogle Scholar
  7. Bailon S (1991) Amphibiens et reptiles du Pliocène et du Quaternaire de France et d’Espagne: Mise en place et évolution des faunes. PhD Thesis, Université de Paris VII, FranceGoogle Scholar
  8. Bailon S, Rage JC (1992). Amphibiens et Reptiles du Quaternaire. Relations avec l’homme. Mém. Soc. géol. Fr. 160: 95–100Google Scholar
  9. Barber PH (1999). Patterns of gene flow and population genetic structure in the canyon treefrog, Hyla arenicolor (Cope). Mol. Ecol. 8: 563–576PubMedCrossRefGoogle Scholar
  10. Berglund B (1998) Projekt Lökgroda 1993–1996. Länsstyrelsen i Skane län (ed.). Malmö, SwedenGoogle Scholar
  11. Borkin LJ, Litvinchuk SN, Rosanov JM, Milto KD (2001). Cryptic speciation in Pelobates fuscus (Anura, Pelobatidae): evidence from DNA flow cytometry. Amphibia-Reptilia 22: 387–396CrossRefGoogle Scholar
  12. Clement M, Posada D, Crandall KA (2000). TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657–1659PubMedCrossRefGoogle Scholar
  13. Collins JP, Storfer A (2003). Global amphibian declines: sorting the hypotheses. Diversity Distrib. 9: 89–98CrossRefGoogle Scholar
  14. Crnobrnja-Isailović J, Džukić G, Krstić N, Kalezić ML (1997). Evolutionary and paleogeographical effects on the distribution of the Triturus cristatus superspecies in the central Balkans. Amphibia-Reptilia 18: 321–332CrossRefGoogle Scholar
  15. Dubois A (1998). Mapping European amphibians and reptiles: collective inquiry and scientific methodology. Alytes 15: 176–204Google Scholar
  16. Džukić G, Beskov V, Sidorovska V, Cogălniceanu D, Kalezić M (2005). Historical and contemporary ranges of the Spadefoot toads (Pelobates spp., Amphibia, Anura) in the Balkan Peninsula. Acta Zoologica Cracoviensia 48: 1–9Google Scholar
  17. Dzukic G, Kalezic M (2004). The biodiversity of amphibians and reptiles in the Balkan peninsula. In: Balkan Biodiversity (ed. Griffiths HI et al.), pp. 167–192. Kluwer Academic PublishersGoogle Scholar
  18. Eggert C (2000) Le déclin du Pélobate brun (Pelobates fuscus, Amphibien Anoure): Apport de la phylogéographie et de la dynamique de population à sa compréhension. Implications pour sa conservation. PhD thesis, University of Savoie, FranceGoogle Scholar
  19. Eggert C (2002). Use of fluorescent pigments and implantable transmitters to track a fossorial toad (Pelobates fuscus). Herp. J. 12: 69–74Google Scholar
  20. Fog K, Schmedes A, de Lasson DR (1997). Nordens padder og krybdyr. En felthåndbog, Gads Forlag, KøbenhavnGoogle Scholar
  21. Frenzel B, Pecsi B, Velichko AA (eds) (1992). Atlas of Palaeoclimates and Palaeoenvironments of the Northern Hemisphere. INQUA/Hungarian Academy of Sciences, BudapestGoogle Scholar
  22. Gardner T (2001). Declining amphibian populations: a global phenomenon in conservation biology. Anim. Biodiv. Conserv. 24: 25–44Google Scholar
  23. Gislen T (1938). On the history of evolution and distribution of the European Pelobatids. Zoogeographica 3: 119–131Google Scholar
  24. Gislen T, Kauri H (1959). Zoogeography of the Swedish amphibians and reptiles with notes on their growth and ecology. Acta Vert. 1: 195–398Google Scholar
  25. Gleed-Owen CP (2000). Subfossil records of Rana cf. lessonae, Rana arvalis and Rana cf. dalmatina from Middle Saxon (c. 600–950 AD) deposits in eastern England: evidence for native status. Amphibia-Reptilia 21: 57–65CrossRefGoogle Scholar
  26. Hels T (2002). Population dynamics in a Danish metapopulation of Spadefoot toads (Pelobates fuscus). Ecography 25: 303–313CrossRefGoogle Scholar
  27. Hewitt G (1996). Some genetic consequences of the ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247–276Google Scholar
  28. Hewitt G (2000). The genetic legacy of the Quaternary ice ages. Nature 405: 907–913PubMedCrossRefGoogle Scholar
  29. Irwin DM, Kocher TD, Wilson AC (1991). Evolution of the cytochrome b gene mammals. J. Mol. Evol. 32: 128–144PubMedCrossRefGoogle Scholar
  30. Johns GC, Avise JC (1998). A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol. Biol. Evol. 15: 1481–1490PubMedGoogle Scholar
  31. Kalezić ML (1984). Evolutionary divergences in the smooth newt, Triturus vulgaris (Urodela, Salamandridae): electrophoretic evidence. Amphibia-Reptilia 5: 221–230CrossRefGoogle Scholar
  32. Kauri H (1946). Die Verbreitung der Amphibien und Reptilien in Estland. Kungl. Fysiografiska Sallskapets I Lund Forhandlingar. 16: 167–186Google Scholar
  33. Kiesecker JM, Blaustein AR, Belden LK (2001). Complex causes of amphibian population declines. Nature 410: 681–684PubMedCrossRefGoogle Scholar
  34. Knowles LL, Maddison WP (2002). Statistical phylogeography. Mol. Ecol. 11: 2623–2635PubMedCrossRefGoogle Scholar
  35. Kumar S, Tamura K, Jakobsen IB, Nei M (2003). MEGA3: Molecular Evolutionary Genetics Analysis software. Arizona State University, Tempe, Arizona, USAGoogle Scholar
  36. Kuzmin SL (1999). The Amphibians of the Former Soviet Union. Pensoft, Sofia, MoscowGoogle Scholar
  37. Lambeck K (1997). Sea-level change along the French Atlantic Channel coasts since the time of the Last Glacial Maximum. Palaeogeo. Palaeoclim. Palaeoeco. 129: 1–22CrossRefGoogle Scholar
  38. Lescure J (1984). La répartition passée et actuelle des Pélobates (Amphibiens Anoures) en France. Bull. Soc. Herp. Fr. 29: 45–59Google Scholar
  39. Martinez-Rica JP (1997) General features of European climate and vegetation consequences on the distribution of herpetofauna. In: Atlas of Amphibians and Reptiles in Europe (eds. Societas Europaea Herpetologica, Muséum National d’Histoire Naturelle), pp. 17–21. IEGB/SPN, ParisGoogle Scholar
  40. Meissner K (1970). Obligatorisches Lernen im Funktionskreis der Vergrabehandlung von Pelobates fuscus fuscus Laur. (Anura). Ein Beitrag zur Ethometrie des Appetenzverhaltens. Zool. Jb. Physiol. 75: 423–469Google Scholar
  41. Mlynarski M (1962). Notes on the amphibian and reptilian fauna of the Polish Pliocene and Early Pleistocene. Acta Zool. Cracov. 7: 177–194Google Scholar
  42. Moritz C (1994a). Defining “evolutionary significant units” for conservation. Trends Ecol. Evol. 9: 373–375CrossRefGoogle Scholar
  43. Moritz C (1994b). Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3: 401–411CrossRefGoogle Scholar
  44. Nei M. (1987) Molecular Evolutionary Genetics. Columbia Univ. Press, New YorkGoogle Scholar
  45. Nevo E, Beiles A (1991). Genetic diversity and ecological heterogeneity in amphibian evolution. Copeia 1991: 565–592CrossRefGoogle Scholar
  46. Nöllert A (1997) Pelobates fuscus (Laurenti, 1768). In: Atlas of Amphibians and Reptiles in Europe (eds. Societas Europaea Herpetologica, Muséum National d’Histoire Naturelle), pp. 110–111. IEGB/SPN, ParisGoogle Scholar
  47. Parent G (1985). Précisions sur la répartition du Pelobate brun, Pelobates fuscus (Laurenti, 1768), en France. Alytes 4: 52–60Google Scholar
  48. Pelt FL, Van Bree PJH (1965). Enkele aantekeningen over de knoflookpad, Pelobates fuscus (Laurenti, 1768) in Nederland. Overdr. Nat. Hist. Maandbl. 54: 58–65Google Scholar
  49. Perczy C (1994). Le site à Pelobates de la région Wallonne. Les cahiers des Réserves Naturelles – RNOB. 7: 105–108Google Scholar
  50. Phillips CA (1994). Geographic distribution of mitochondrial DNA variants and the historical biogeography of the spotted salamander Ambystoma maculatum. Evolution 48: 597–607CrossRefGoogle Scholar
  51. Phillips CA, Suau G, Templeton A (2000). Effects of Holocene climate fluctuation on mitochondrial DNA variation in the ringed salamander, Ambystoma annulatum. Copeia 2000: 542–545CrossRefGoogle Scholar
  52. Posada D, Crandall KA (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818PubMedCrossRefGoogle Scholar
  53. Posada D, Crandall KA, Templeton AR (2000). GeoDis: A program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol. 9: 487–488PubMedCrossRefGoogle Scholar
  54. Rappė G (1982). Nieuwe gegevens over het voorkomen van Pelobates fuscus (Laurenti) (Anura, Pelobatidae) in België. Biol. Jb. Dodonaea 50: 255–259Google Scholar
  55. Riberon A, Miaud C, Grossenbacher K, Taberlet P (2001). Phylogeography of the Alpine salamander, Salamandra atra (Salamandridae) and the influence of the Pleistocene climatic oscillations on population divergence. Mol. Ecol. 10: 2555–2560PubMedCrossRefGoogle Scholar
  56. Roček Z (1988). List of fossil amphibians of Czechoslovakia. Acta zool. Cracov. 31: 513–540Google Scholar
  57. Rowe G, Beebee TJC, Burke T (1999). Microsatellite heterozygosity, fitness and demography in natterjack toads Bufo calamita. Anim. Cons. 2: 85–92CrossRefGoogle Scholar
  58. Rozas J., Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497PubMedCrossRefGoogle Scholar
  59. Ryder OA (1986). Species conservation and systematics: the dilemma of subspecies. Trends Ecol. Evol. 1: 9–10CrossRefGoogle Scholar
  60. Shpun S, Hoffman E, Nevo E, Katz U (1993). Is the distribution of Pelobates syriacus related to its limited osmoregulatory capacity?. Comp. Biochem. Physiol. 105A: 135–139CrossRefGoogle Scholar
  61. Stewart JR, Lister AM (2001). Cryptic northern refugia and the origins of modern biota. Trends Ecol. Evol. 16: 608–613CrossRefGoogle Scholar
  62. Swofford DL (1998). PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland MAGoogle Scholar
  63. Taberlet P (1998). Biodiversity at the intraspecific level: the comparative phylogeographic approach. J. Biotechnol. 64: 91–100CrossRefGoogle Scholar
  64. Taberlet P, Cheddadi R (2002). Quaternary refugia and persistence of biodiversity. Science 297: 2009–2010PubMedCrossRefGoogle Scholar
  65. Taberlet P, Meyer A, Bouvet J (1992). Unusual mitochondrial DNA polymorphism in two local populations of blue tit Parus caerulus. Mol. Ecol. 1: 27–36PubMedCrossRefGoogle Scholar
  66. Taberlet P, Fumagalli L, Wust-Saucy AG, Cossons JF (1998). Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7: 453–464PubMedCrossRefGoogle Scholar
  67. Templeton AR (2004). Statistical phylogeography: methods of evaluating and minimizing inference errors. Mol. Ecol. 13: 789–809PubMedCrossRefGoogle Scholar
  68. Templeton AR, Boerwinkle E, Sing CF (1987). A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117: 343–351PubMedGoogle Scholar
  69. Templeton AR, Routman E, Phillips CA (1995). Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140: 767–782PubMedGoogle Scholar
  70. Templeton AR, Sing CF (1992). A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134: 659–669Google Scholar
  71. Venczel M (1989). Data on the herpetofauna from fossil deposits of Burzău-Rîpa, Bihor County. Crisia 19: 761–771Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Christophe Eggert
    • 1
    Email author
  • Dan Cogălniceanu
    • 2
  • Michael Veith
    • 3
  • Georg Dzukic
    • 4
  • Pierre Taberlet
    • 5
  1. 1.Laboratory of Alpine Ecology, CNRS UMR 5553Université de Savoie, CISMLe Bourget du Lac CedexFrance
  2. 2.Faculty of Biology, Department of EcologyBucharest UniversityBucharestRomania
  3. 3.Institut für Zoologie, Abteilung ÖkologieJohannes Gutenberg-Universität MainzMainzGermany
  4. 4.Institute for Biological research “Sinisa Stankovic” Bulevar despota Stefana 142Belgrade FRSerbia
  5. 5.Laboratory of Alpine Ecology, CNRS UMR 5553Université Joseph FourierGrenoble Cedex 9France

Personalised recommendations