Conservation Genetics

, Volume 7, Issue 6, pp 861–878 | Cite as

Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program

  • Oscar Ramirez
  • Laura Altet
  • Conrad Enseñat
  • Carles Vilà
  • Armand Sanchez
  • Alfredo RuizEmail author


The main goal of ex situ conservation programs is to improve the chances of long term survival of natural populations by founding and managing captive colonies that can serve as a source of individuals for future reintroductions or to reinforce existing populations. The degree in which a captive breeding program has captured the genetic diversity existing in the source wild population has seldom been evaluated. In this study we evaluate the genetic diversity in wild and captive populations of the Iberian wolf, Canis lupus signatus, in order to assess how much genetic diversity is being preserved in the ongoing ex situ conservation program for this subspecies. A sample of domestic dogs was also included in the analysis for comparison. Seventy-four wolves and 135 dogs were genotyped at 13 unlinked microsatellite loci. The results show that genetic diversity in Iberian wolves is comparable in magnitude to that of other wild populations of gray wolf. Both the wild and the captive Iberian wolf populations have a similarly high genetic diversity indicating that no substantial loss of diversity has occurred in the captive-breeding program. The effective number of founders of the program was estimated as ∼ ∼16, suggesting that all founders in the studbook pedigree were genetically independent. Our results emphasize also the genetic divergence between wolves and domestic dogs and indicate that our set of 13 microsatellite loci provide a powerful diagnostic test to distinguish wolves, dogs and their hybrids.

Key words:

captive breeding dog genetic diversity microsatellites wolf 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study would not have been possible without the help of the institutions who collected and provided wolf and dog samples: Zoo Aquarium de la casa de Campo, Parc Zoològic de Barcelona, Parque Ecológico Bizcaia, Jardim Zoológico de Lisboa, Parque Zoológico de Jerez, Zoológico Municipal de Guadalajara, Zoológico de Santillana del Mar, Safari Park Vergel, and Servei Veterinari de Genètica Molecular (UAB). This work was supported by grant BMC2002-01708 from the Dirección General de Investigación, Ministerio de Ciencia y Tecnología (Spain).


  1. Alonso P, Barrientos LM, Fernández A, Llaneza L, Rico M, de la Torre JA, Vilà C (1999) Situación actual del lobo en España. Quercus 157, 24–25Google Scholar
  2. Altet L, Francino O, Sánchez A (2001) Microsatellite polymorphism in closely related dogs. J. Hered. 92, 276–279PubMedCrossRefGoogle Scholar
  3. Andersone Z, Lucchini V, Randi E, Ozolins J (2002) Hybridisation between wolves and dogs in Latvia as documented using mitochondrial and microsatellite DNA markers. Mamm. Biol. 67, 79–90Google Scholar
  4. Ballou JD, Foose TJ (1996) Demographic and genetic management of captive populations. In: Kleiman DG, Allen ME, Thompson KV, Lumpkin S (eds), Wild Mammals in Captivity. Principles and Techniques. The University of Chicago Press, Chicago, pp. 263–283Google Scholar
  5. Ballou JD, Lacy RC (1995) Identifying genetically important individuals for management of genetic diversity in pedigreed populations. Population Management for Survival and Recovery Analytical Methods and Strategies in Small Population Conservation. Columbia University Press, New York, pp. 76–111Google Scholar
  6. Baillie JEM, Hilton-Taylor C, Stuart SN (eds), (2004) IUCN Red List of Threatened Species. A Global Species Assessment. IUCN – The World Conservaqtion Union, Gland, SwitzerlandGoogle Scholar
  7. Blanco JC, Cuesta L, Reig S (1992) Distribution, status, and conservation problems of the wolf Canis lupus in Spain. Biol. Conserv. 60: 73–80CrossRefGoogle Scholar
  8. Blanco JC, Cortés Y (2002) Ecología, censos, percepción y evolución del lobo en España: Análisis de un conflicto. Sociedad Española para la Conservación y Estudio de los Mamíferos, Málaga, SpainGoogle Scholar
  9. Boitani L (2003) Wolf conservation and recovery. In: Mech LD, Boitani L (eds), Wolves. Behavior, Ecology, and Conservation. The University of Chicago Press, Chicago, pp. 317–344Google Scholar
  10. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Amer. J. Hum. Genet., 32, 314–331PubMedGoogle Scholar
  11. Bouman I, Bouman J (1994) The History of Przewalski’s Horse. In: Boyd L, Houpt KA (eds), Przewalski’s horse: The History and Biology of an Endangered Species. State University of New York Press, Albany, New York, pp. 5–39Google Scholar
  12. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellite. Nature 368, 455–457CrossRefPubMedGoogle Scholar
  13. Cabrera A (1907) Los lobos de España. Bol. R. Soc. Esp. Hist. Nat. 7, 193–198Google Scholar
  14. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890PubMedGoogle Scholar
  15. Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295CrossRefPubMedGoogle Scholar
  16. Denniston C (1978) Small population size and genetic diversity: Implications for endangered species. In: Temple (eds), Endangered Birds: Management Techniques for Preserving Threatened Species. University of Wisconsin Press, Madison, pp. 281–289Google Scholar
  17. Ellegren H (1999) Inbreeding relatedness in Scandinavian grey wolves Canis lupus. Hereditas 130, 239–244CrossRefPubMedGoogle Scholar
  18. Enseñat C (1996) European Regional Studbook. Lobo ibérico Canis lupus signatus. Parc Zoològic de Barcelona, Barcelona, SpainGoogle Scholar
  19. Forbes SH, Boyd DK (1996) Genetic variation of naturally colonizing wolves in the central rocky mountains. Conserv. Biol. 10, 1082–1090CrossRefGoogle Scholar
  20. Francino O, Amills M, Sánchez A (1997) Canine Mhc DRB1 phenotyping by PCR-RFLP analysis. Anim. Genet. 28, 41–45PubMedCrossRefGoogle Scholar
  21. Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA (1996) A class of highly polymorphic tetranucleotide repeats for the canine genetic mapping. Mamm. Genome 7, 359–362CrossRefPubMedGoogle Scholar
  22. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, CambridgeGoogle Scholar
  23. Fredholm M, Wintero AK (1995) Variation of short tandem repeats within and between species belonging to the Canidae family. Mamm. Genome 6, 11–18PubMedCrossRefGoogle Scholar
  24. Fredrickson R, Hedrick P (2002) Body size in endangered Mexican wolves: effects of inbreeding and cross-lineage matings. Anim. Conserv. 5, 39–43Google Scholar
  25. Garcia-Moreno J, Matocq MD, Roy MS, Geffen E, Wayne RK (1996) Relationships ang genetic purity of the endangered mexican wolf based on análisis of microsatellite loci. Conserv. Biol. 10, 376–389CrossRefGoogle Scholar
  26. Geyer CJ, Ryder OA, Chemnick LG, Thompson EA (1993) Analysis of relatedness in the California condors, from DNA fingerprints. Mol. Biol. Evol. 10, 571–589Google Scholar
  27. Gottelli D, Sillero-Zubiri C, Applebaum GD, Roy MS, Girman DJ, Garcia-Moreno J, Ostranders EA, Wayne RK (1994) Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol. Ecol. 3, 301–312PubMedGoogle Scholar
  28. Goudet J (2000) FSTAT Version 2.9.1. Computer Package for PCs. Institute of Ecology, Biology building, UNIL, CH-1015 Lausane, SwitzerlandGoogle Scholar
  29. Gray AP (1954) Mammalian Hybrids; A Check-List with Bibliography. Commonwealth Agricultural Bureaux, Famham Royal, Bucks, UKGoogle Scholar
  30. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportions for multiple alleles. Biometrics 48, 361–372PubMedCrossRefGoogle Scholar
  31. Hedrick PW, Miller PS, Geffen E, Wayne RK (1997) Genetic evaluation of the three captive mexican wolf lineages. Zoo Biol. 16, 47–69CrossRefGoogle Scholar
  32. Hedrick PW (2005) Genetics of Populations. 3rd ed. edition. Jones and Bartlett Publishers, Sudbyry MassachusettsGoogle Scholar
  33. Jamielson A (1994) The effectiveness of using codominant polymorphic allelic series for (1) checking pedigrees and (2) distinguishing full-sib pair members. Anim. Genet. 25, 37–44Google Scholar
  34. Kalinowski ST, Hedrick PW, Miller PS (1999) No inbreeding depression observed in Mexican and red wolf captive breeding programs. Conserv. Biol. 13, 131–137CrossRefGoogle Scholar
  35. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245PubMedCrossRefGoogle Scholar
  36. Laikre L, Ryman N (1991) Inbreeding depression in a captive wolf (Canis lupus) population. Conserv. Biol. 5, 33–40CrossRefGoogle Scholar
  37. Laikre L, Ryman N, Thompson A (1993) Hereditary blindness in a captive wolf (Canis lupus) population: frequency reduction of a deleterious allele in relation to gene conservation. Conserv. Biol. 7, 592–601CrossRefGoogle Scholar
  38. Lariviere S, Crete M (1993) The size of eastern coyotes (Canis latrans): a comment. J. Mammal. 74, 1072–1074CrossRefGoogle Scholar
  39. Lehman N, Eisenhawer A, Hansen K, Mech LD, Peterson RO, Gogan PJP, Wayne RK (1991). Introgression of coyote mitochondrial-DNA into sympatric North-American Gray wolf populations. Evolution 45, 104–119CrossRefGoogle Scholar
  40. Lucchini V, Galov A, Randi E (2004) Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol. Ecol. 13, 523–536PubMedCrossRefGoogle Scholar
  41. Mellersh CS, Langston AA, Acland GM, Fleming MA, Ray K, Wiegand NA, Francisco LV, Gibbs M, Aguirre G, Ostrander, EA (1997) A linkage map of the canine genome. Genomics 46, 326–336CrossRefPubMedGoogle Scholar
  42. Mellersh CS, Hitte C, Richman M, Vignaux F, Priat C, Jouquand S, Werner P, Andraae C, DeRose S, Patterson DF, Ostrander EA, Galibert F (2000) An integrated linkage-radiation hybrid map of the canine genome. Mamm. Genome 11, 120–130CrossRefPubMedGoogle Scholar
  43. Mengel RM (1971) A study of dog-coyotes hybrids and implications concerning hybridization in Canis. J. Mammal. 52, 316–336PubMedCrossRefGoogle Scholar
  44. Mercure A, Ralls K, Koepfli KP, Wayne RK (1993) Genetic subdivisions among small canids – mitochondrial-DNA differentiation of swift, kit, and arctic foxes. Evolution 47, 1313–1328CrossRefGoogle Scholar
  45. Minch E, Ruiz-Linares A, Goldstein DB, Feldman MW, Cavalli-Sforza LL (1995) Microsat (version 1.4d): a computer program for calculating various statistics on microsatellite allele data.
  46. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70, 3321–3323PubMedCrossRefGoogle Scholar
  47. Nowak RM, (1979) North American Quaternary Canis. No. 6. Museum of Natural History, University of Kansas, LawrenceGoogle Scholar
  48. Nowak RM (2003) Wolf evolution and taxonomy. In: Mech LD, Boitani L (eds), Wolves. Behavior, Ecology, and Conservation. The University of Chicago Press, Chicago, pp. 239–258Google Scholar
  49. Ostrander EA, Mapa FA, Yee M, Rine J (1995) One hundred and one simple sequence repeats-based markers for the canine genome. Mamm. Genome 6, 192–195CrossRefPubMedGoogle Scholar
  50. Pemberton JM, Slate J, Bamcroft DR, Barrett JA (1995) Nonamplifying alleles at microsatellites loci: a caution for parentage and population studies. Mol. Ecol. 4, 294–352Google Scholar
  51. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959PubMedGoogle Scholar
  52. Randi E, Lucchini V, Christensen MF, Mucci N, Funk SM, Dolf G, Loeschcke V (2000) Mitochondrial DNA variability in Italian and East European wolves: detecting the consequences of small population size and hybridization. Conserv. Biol. 14, 464–473CrossRefGoogle Scholar
  53. Randi E, Lucchini V (2002) Detecting rare introgression of domestic dog genes into wild wolf (Canis lupus) populations by Bayesian admixture analyses of microsatellite variation. Conserv. Biol. 3, 31–45Google Scholar
  54. Raymond M, Rousset F (1995) GENEPOP (Version 3.1): population genetics software for exact test and ecumenicism. J. Hered. 86, 248–249Google Scholar
  55. Roy MS, Geffen E, Smith D, Ostrander EA, Wayne RK (1994) Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci. Mol. Biol. Evol. 11, 553–570PubMedGoogle Scholar
  56. Roy MS, Geffen E, Smith D, Wayne RK (1996) Molecular genetics of pre-1940 red wolves. Conserv. Biol. 10, 1413–1424CrossRefGoogle Scholar
  57. Russello MA, Amato G (2004) Ex situ population management in the absence of pedigree information. Mol. Ecol. 13, 2829–2840CrossRefPubMedGoogle Scholar
  58. Saccone C, Attimonelli M, Sbisa E (1987) Structural elements highly preserved during the evolution of the D-loop-containing region in vertebrate mitochondrial DNA. J. Mol. Evol. 26, 205–211CrossRefPubMedGoogle Scholar
  59. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425PubMedGoogle Scholar
  60. Sillero-Zubiri C, Hoffman M, Macdonald DW (2004) Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. IUCN/SSC Canid Specialist Group, Gland, Switzerland and Cambridge, UKGoogle Scholar
  61. Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biological research. W.H. Freeman and Co, New YorkGoogle Scholar
  62. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. USA 101, 15261–15264CrossRefPubMedGoogle Scholar
  63. Storme V, Vanden Broeck A, Ivens B, et al. (2004) Ex-situ conservation of Black poplar in Europe: genetic diversity in nine gene bank collections and their value for nature development. Theor. Appl. Genet. 08, 969–981CrossRefGoogle Scholar
  64. Swofford DL, Selander R (1999) BIOSYS-2: A Computer Program for the Analysis of Allelic Variation in Population Genetics and Biochemical Systematics (Release 2.0). University of Illinois, Urbana, Champaign, ILGoogle Scholar
  65. Taberlet P (1996) The use of mitochondrial DNA control region sequencing in conservation genetics. In: Smith TB, Wayne RK (eds), Molecular Genetic Approaches in Conservation. Oxford University Press, New York, pp. 125–142Google Scholar
  66. Thurber JM, Peterson RO (1991) Changes in body size associated with range expansion in the coyote (Canis latrans). J. Mammal. 72, 750–755CrossRefGoogle Scholar
  67. USFWS (1998) Endangered and Threatened Wildlife and Plants: Establishment of a nonessential experimental population of the Mexican gray wolf in Arizona and New Mexico. Federal Register, 63, 1752–1772Google Scholar
  68. Vilà C (1993) Aspectos morfológicos y ecológicos del lobo ibérico Canis lupus. L. PhD Thesis, Universidad de BarcelonaGoogle Scholar
  69. Vilà C, Savolainen P, Maldonado JE, et al. (1997) Multiple and ancient origins of the domestic dog. Science 276, 1687–1689CrossRefPubMedGoogle Scholar
  70. Vilà C, Wayne RK (1999) Hybridization between wolves and dogs. Conserv. Biol. 13, 195–198CrossRefGoogle Scholar
  71. Vilà C, Amorin IR, Leonard JA, Posada D, Castroviejo SJ, Petrucci-Fonseca F, Crandall A, Ellegren SH, Wayne RK (1999) Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol. Ecol. 8, 2089–2103CrossRefPubMedGoogle Scholar
  72. Vilà C, Walker C, Sundqvist AK, et al. (2003) Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf–dog hybrids. Heredity 90, 17–24CrossRefPubMedGoogle Scholar
  73. Wayne RK, Jenks SM (1991) Mitochondrial-DNA analysis implying extensive hybridization of the endangered red wolf Canis-Rufus. Nature 351, 565–568CrossRefGoogle Scholar
  74. Wayne RK, Brown DM (2001) Hybridization and conservation of carnivores. In: Gittleman JL, Funk SM, Macdonald D, Wayne RK, Carnivore Conservation. Cambridge University Press, CambridgeGoogle Scholar
  75. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370CrossRefGoogle Scholar
  76. Wyner YM, Amato G, Desalle R (1999) Captive breeding, reintroduction, and the conservation genetics of black and white ruffed lemurs, Varecia variegata variegata. Mol. Ecol. 8, S107-S115CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Oscar Ramirez
    • 1
  • Laura Altet
    • 1
  • Conrad Enseñat
    • 2
  • Carles Vilà
    • 3
  • Armand Sanchez
    • 1
  • Alfredo Ruiz
    • 4
    Email author
  1. 1.Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Parc Zoològic de BarcelonaBarcelonaSpain
  3. 3.Department of Evolutionary BiologyUppsala UniversityUppsalaSweden
  4. 4.Departament de Genètica i Microbiologia, Facultat de Ciències – Edifici CUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain

Personalised recommendations