Advertisement

Conservation Genetics

, Volume 7, Issue 6, pp 825–835 | Cite as

Microsatellite variation and population structure of a recovering Tree frog (Hyla arborea L.) metapopulation

  • Paul ArensEmail author
  • Rob Bugter
  • Wendy van’t Westende
  • Ronald Zollinger
  • Jan Stronks
  • Claire C. Vos
  • Marinus J. M. Smulders
Article

Abstract

Numbers and sizes of populations of the European tree frog in The Netherlands have dramatically decreased in the second half of the last century due to extensive habitat destruction and fragmentation. We have studied the genetic structure of a slowly recovering meta-population. Strong genetic differentiation, estimated at eight microsatellite loci, was found between clusters of populations (F st-values above 0.2). Within clusters, consisting of ponds within a radius of about 5 km, European tree frog populations were less differentiated (F st<0.08) and exact tests showed that most of the ponds within clusters were not significantly differentiated. Although local population sizes have been increasing since 1989, and some new ponds have been colonised in the direct vicinity of ponds that have been populated continuously, little evidence for gene flow between clusters of ponds was found (only one exception). Furthermore, levels of genetic diversity were low compared to populations in comparable areas elsewhere in Europe. Therefore, a continuous conservation effort is needed to prevent any further loss of genetic diversity. The alleviation of important barriers to dispersal between the clusters should be given a high priority for the restoration of the meta-population as a whole.

Keywords

bottleneck genetic diversity habitat fragmentation molecular marker SSR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We kindly acknowledge private landowners and nature conservation organisations for their permission to access the ponds. L. Andersen is kindly acknowledged for sharing with us the information on allelic richness of Danish European tree frog populations.

S. Dubey is thanked for sending us DNA from two Swiss European tree frog populations and sharing information. We thank B. Vosman and W. van Delden for discussions and valuable comments on earlier versions of the manuscript. Three anonymous referees and R. Hoelzel are thanked for their suggestions to improve the manuscript.

References

  1. Andersen LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks and inbreeding in the European Tree frog (Hyla arborea). Proc. R. Soc. Lond. B. Biol Sci. 271: 1293–1302CrossRefGoogle Scholar
  2. Arens P, Van ’t Westende W, Bugter R, Smulders MJM, Vosman B (2000) Microsatellite markers for the European Tree frog Hyla arborea. Mol. Ecol. 9: 1944–1946CrossRefPubMedGoogle Scholar
  3. Bredemeijer GMM, Arens P, Wouters D, Vissser D, Vosman B (1998) The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theor. Appl. Genet. 97: 584–590CrossRefGoogle Scholar
  4. Burns EL, Eldridge MDB, Houlden BA (2004) Microsatellite variation and population structure in a declining Australian hylid Litoria aurea. Mol. Ecol. 13: 1745–1757CrossRefPubMedGoogle Scholar
  5. Cornuet JM, Luikart G (1997) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014Google Scholar
  6. Crombaghs BHJM, Lenders HJR (2001). Conservation Plan Tree frog 2001–2005. Centre of Expertise, Ministry of Agriculture, Nature and Food Safety, Report nr. 42, Wageningen (In Dutch)Google Scholar
  7. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa L. Skeels) endemic to Morocco. Theor. Appl. Genet. 92: 832–839CrossRefGoogle Scholar
  8. Etienne RS, Ter Braak CJF, Vos CC (2004) Application of stochastic patch occupancy models to real metapopulations. In: Hanski I, Gaggiotti OE (eds) Ecology, Genetics, and Evolution of Metapopulations. Elsevier Academic Press, New York, pp 105–132Google Scholar
  9. Fog K (1993) Migration in the Tree frog Hyla arborea. In: Stumpel AHP, Tester U (eds) Ecology and conservation of the European Tree frog. DLO Institute for Forestry and Nature Research, WageningenGoogle Scholar
  10. Frankham R (1995) Inbreeding and extinction: Island populations. Conserv. Biol. 12: 665–675CrossRefGoogle Scholar
  11. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10: 305–318CrossRefPubMedGoogle Scholar
  12. Gibbs JP (1998) Distribution of woodland amphibians along a forest fragment gradient. Landscape Ecol. 13: 263–268CrossRefGoogle Scholar
  13. Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486Google Scholar
  14. Goudet J, Raymond M, Demeeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144: 1933–1940PubMedGoogle Scholar
  15. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361–372PubMedCrossRefGoogle Scholar
  16. Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404: 752–755CrossRefPubMedGoogle Scholar
  17. Luikart GL, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89: 238–247CrossRefPubMedGoogle Scholar
  18. Miller MP (1997) Tools For Population Genetic Analyses 3.1 (TFPGA). A windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author at http://www.bioweb.usu.edu/mpmbio/index.htm.
  19. Newman RA, Squire T (2001) Microsatellite variation and fine-scale population structure of wood frogs (Rana sylvatica). Mol. Ecol. 10: 1087–1100CrossRefPubMedGoogle Scholar
  20. Paetkau D, Calvert W, Sterling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347–354PubMedGoogle Scholar
  21. Payne RW, Lane PW, Baird DB, Gilmour AR, Harding SA, Morgan GW, Murray DA, Thompson R, Todd AD, Tunnicliffe Wilson G, Webster R, Welham SJ (1993) Genstat 5, Release 3, Reference Manual. Clarendon Press, OxfordGoogle Scholar
  22. Pearce DE, Crandall KA (2004) Beyond FST: Analysis of population genetic data for conservation. Cons. Genet. 5: 585–602CrossRefGoogle Scholar
  23. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95: 536–539CrossRefPubMedGoogle Scholar
  24. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959PubMedGoogle Scholar
  25. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43: 223–225CrossRefGoogle Scholar
  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  27. Semlitsch RD (2000) Principles for management of aquatic-breeding amphibians. J. Wildl. Manag. 64: 615–631Google Scholar
  28. Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol. Ecol. 9: 1517–1528CrossRefPubMedGoogle Scholar
  29. Stronks DJ (2000) Monitoring Boomkikker Achterhoek 2000. Staringadvies, Zelhem (In Dutch).Google Scholar
  30. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and Trends of Amphibian Declines and Extinctions Worldwide. Science 306: 1783–1786CrossRefPubMedGoogle Scholar
  31. Stumpel AHP, Hanekamp G (1986). Habitat ecology of Hyla arborea in The Netherlands. In: Studies in Herpetology, Proceedings of 3rd meeting of S. E. H., Prague 1985 (ed. Rocek Z), pp. 409–411. Charles University, PragueGoogle Scholar
  32. Vos CC, Stumpel AHP (1996) Comparison of habitat-isolation parameters in relation to fragmented distribution patterns in the Tree frog (Hyla arborea). Landscape ecol. 11: 203–214CrossRefGoogle Scholar
  33. Vos CC, Ter Braak CJF, Nieuwenhuizen W (2000) Incidence function modeling and conservation of the tree frog Hyla arborea in the Netherlands. Ecol. Bull. 48: 165–180Google Scholar
  34. Weir BS, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38: 1358–1370CrossRefGoogle Scholar
  35. Zollinger R (2004) Das artenschutzprogramm laubfrosch in den Niederlanden. Zeitschrift für Feldherpetologie, Supplement 5: 175–181Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Paul Arens
    • 1
    Email author
  • Rob Bugter
    • 2
  • Wendy van’t Westende
    • 1
  • Ronald Zollinger
    • 3
  • Jan Stronks
    • 4
  • Claire C. Vos
    • 2
  • Marinus J. M. Smulders
    • 1
  1. 1.Plant Research InternationalWageningen University and Research CentreWageningenThe Netherlands
  2. 2.Landscape Centre, AlterraWageningen University and Research CentreWageningenThe Netherlands
  3. 3.RAVONNijmegenThe Netherlands
  4. 4.Staring AdviesZelhemThe Netherlands

Personalised recommendations