Conservation Genetics

, Volume 7, Issue 2, pp 241–250 | Cite as

The genetic population structure of the ant Plagiolepis xene-implications for genetic vulnerability of obligate social parasites

  • Kalevi TronttiEmail author
  • Serge Aron
  • Liselotte Sundström


Obligatory social parasites, such as ant species that need colonies of other ant species for reproduction, are rare and many of them are classified as vulnerable. This is especially the case with highly adapted permanent inquilines that are specialised on one or a few host species. Their rarity may be due to reduced dispersal abilities, as a result of reduced body size, altered wing morphology, and curtailed nuptial flight, eventually leading to inbreeding. Furthermore, the host populations may differ in their ability to resist the parasite, yet the conditions of successful parasite invasion are largely unknown. Here we investigated the population structure of the inquiline ant Plagiolepis xene and its host P. pygmaea, using microsatellite data. Genetic differentiation, inbreeding, the effective population size and nest kin structure were analysed. We found that populations of P. xene are established by a single or at most a few individuals, and that the populations were genetically highly differentiated. However, within individual host populations the parasite is able to maintain panmixia, although data on the host suggests that the local distribution of the parasite also follows patterns of substructuring in the host population. Altogether our results suggest that inquiline parasite populations are genetically highly vulnerable.

Key words:

genetic vulnerability inquilinism Plagiolepis xene population structure social parasitism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We wish to thank Luc Passera for sharing samples of P. xene and his expertise for the collections, Ludivine De Menten for her contribution to the collection in Bruniquel, Birgit Schlick-Steiner and Florian Steiner, and Alfred Buschinger for up-to-date information on the distribution of Plagiolepis inquilines, and the Spatial Ecology program of the University of Helsinki. This work was financed by Finnish Graduate School in Wildlife Biology, Conservation and Management (LUOVA) and Emil Aaltonen Foundation (to KT), Academy of Finland (grants no 42725, 206505 to LS, and the Spatial Ecology Programme), and the Belgian Fonds National pour la Recherche Scientifique (to␣SA).


  1. Aron S, Passera L, Keller L (1999) Evolution of social parasitism in ants: Size of sexuals, sex ratio and mechanisms of caste determination. Proc. R. Soc. Lond. B 266: 173–177CrossRefGoogle Scholar
  2. Bekkevold D, Boomsma JJ (2000) Evolutionary transition to a semelparous life history in the socially parasitic ant Acromyrmex insinuanator. J. Evol. Biol. 13: 615–623CrossRefGoogle Scholar
  3. Bourke AFG, Franks NRF (1995) Social Evolution in Ants. Princeton University Press, New JerseyGoogle Scholar
  4. Buschinger A (1989) Evolution, speciation, and inbreeding in the parasitic ant genus Epimyrma (Hymenoptera, Formicidae). J. Evol. Biol. 2: 265–283CrossRefGoogle Scholar
  5. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18: 237–268CrossRefGoogle Scholar
  6. Corander J, Waldmann P, Marttinen P, Sillanpää MJ (2004) BAPS 2: Enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20: 2363–2369CrossRefPubMedGoogle Scholar
  7. Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163: 367–374PubMedGoogle Scholar
  8. D’Ettorre P, Mondy N, Lenoir A, Errard C (2002) Blending in with the crowd: Social parasites integrate into their host colonies using a flexible chemical signature. Proc. R. Soc. Lond. B 269: 1911–1918CrossRefGoogle Scholar
  9. Faber W (1969) Beiträge zur Kenntnis sozialparasitischer Ameisen.2. Aporomyrmex ampeloni nov. gen., nov. spec. (Hym. Formicidae), ein neuer permanenter Sozialparasit bei Plagiolepis vindobonensis Lominicki aus Österreich. Pflanzenschutzberichte, 39: 39–100Google Scholar
  10. Foitzik S, DeHeer CJ, Hunjan DN, Herbers JM (2001) Coevolution in host-parasite systems: Behavioural strategies of slave-making ants and their hosts. Proc. R. Soc. Lond. B 268: 1139–1146CrossRefGoogle Scholar
  11. Foitzik S, Herbers JM (2001) Colony structure of a slavemaking ant. II. Frequency of slave raids and impact on the host population. Evolution 55: 316–323PubMedGoogle Scholar
  12. Goudet J (1995) FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 86: 485–486Google Scholar
  13. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from Updated from Goudet (1995)
  14. Hartl DL, Clark AG (1989) Principles of Population Genetics, 2nd edition. Sinauer Associates, MassachusettsGoogle Scholar
  15. Hölldobler B, Wilson EO (1990) The Ants. Belknap Press of Harward University Press, Cambridge, MassachusettsGoogle Scholar
  16. Johnson CA, Topoff H, Vander Meer RK, Lavine B (2002) Host queen killing by a slave-maker ant queen: When is a host queen worth attacing?. Anim. Behav. 64: 807–815CrossRefGoogle Scholar
  17. Johnson CA, Topoff H, Vander Meer RK, Lavine B (2005) Do these eggs smell funny to you?: an experimental study of egg discrimination by hosts of the social parasite Polyergus breviceps (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol., 57: 245–255CrossRefGoogle Scholar
  18. Le Masne (1956) recherches sur les fourmis parasites. Le parasitisme social double. C. R. Acad. Sc. Paris 56: 1243–1246Google Scholar
  19. Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu. Rev. Entomol., 46: 573–599CrossRefPubMedGoogle Scholar
  20. Lenoir A, Fresneau D, Errard C, Hefetz A (1999) Individuality and the colony identity in ants: The emergence of the social representation concept. In: Information Processing in Social Insects (eds. Detrain C, Deneubourg JL, Pasteels J), pp. 219–237. Birkhäuser Verlag, Basel, SwitzerlandGoogle Scholar
  21. Lewis PO, Zaykin D (2001) Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet from
  22. Nei M (1988) Molecular Evolutionary Genetics. Columbia University Press, New YorkGoogle Scholar
  23. Pamilo P (1993) Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70: 472–480CrossRefGoogle Scholar
  24. Pamilo P, Crozier RH (1997) Population biology of social insect conservation. Mem. Museum Victoria, 56: 411–419Google Scholar
  25. Passera L (1964) Données biologiques sur la fourmi parasite Plagiolepis xene Stärcke. Insect. Soc., 11: 159–170CrossRefGoogle Scholar
  26. Passera L (1969) Biologie de la reproduction chez Plagiolepis pygmaea Latreille et ses deux parasites sociaux Plagiolepis grassei Le Masne et Passera et Plagiolepis xene Stärcke (Hymenoptera, Formicidae). Ann. Sci. Nat. Zool. Par. 11: 327–482Google Scholar
  27. Passera L, Gilbert M, Aron S (2001) Social parasitism in ants: effects of inquiline parasite Plagiolepis xene St. on queen distribution and worker production of its host Plagiolepis pygmaea Latr. Insect. Soc. 48: 74–79CrossRefGoogle Scholar
  28. Payne RB (1997) Avian brood parasitism. In: Clayton DH, Moore J (eds), Host-Parasite Evolution: General Principles & Avian Models. Oxford University Press, New York, pp. 338–369Google Scholar
  29. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43: 258–275CrossRefGoogle Scholar
  30. Schlick-Steiner BC, Steiner FM, Schöld S (2003) Plagiolepis ampeloni. In: Rote Listen ausgewählter Tiergruppen Niederösterreichs – Ameisen (Hymenoptera: Formicidae), 1. Fassung 2002, pp. 20. NÖ Landesregierung, Abteilung Naturschutz, St. PöltenGoogle Scholar
  31. Seppä P (1994) Sociogenetic organisation of Myrmica ruginodis and Myrmica lobicornis (Hymenoptera: Formicidae) colonies and populations: number, relatedness and longevity of reproducing individuals. J. Evol. Biol. 7: 71–95CrossRefGoogle Scholar
  32. Sumner S, Nash DR, Boomsma JJ (2003) The adaptive significance of inquiline parasite workers. Proc. R. Soc. Lond. B, 270: 1315–1322CrossRefGoogle Scholar
  33. Trontti K, Tay WT, Sundström L (2003) Characterisation of polymorphic microsatellite markers for the ant Plagiolepis pygmaea. Molec. Ecol. Notes 3: 575–577CrossRefGoogle Scholar
  34. Trontti K, Aron S, Sundström L (2005) Inbreeding and kinship in the ant Plagiolepis pygmaea. Molec. Ecol. 14: 2007–2015CrossRefGoogle Scholar
  35. Vander Meer RK, Morel L (1998) Nestmate recognition in ants. In: Pheromone communication in social insects: ants, wasps, bees, and termites (ed. Winston ML), pp. 79–103.Westview Press, BoulderGoogle Scholar
  36. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370CrossRefGoogle Scholar
  37. Wilson EO (1971) The Insect Societes. Belknap Press of Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  38. Wilson EO, Brown WL (1956) New parasitic ants of the genus Kyidris, with notes on ecology and behaviour. Insect. Soc., 3: 439–454CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Kalevi Trontti
    • 1
    Email author
  • Serge Aron
    • 2
  • Liselotte Sundström
    • 1
  1. 1.Department of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Behavioural and Evolutionary EcologyUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations