Conservation Genetics

, Volume 6, Issue 1, pp 141–145

Interspecific hybridisation in rhinoceroses: Confirmation of a Black × White rhinoceros hybrid by karyotype, fluorescence in situ hybridisation (FISH) and microsatellite analysis

Article

Abstract

Black and white rhinoceroses are among the most charismatic megaherbivores and have become flagship species for international conservation. They are often subject to intense management that includes being compressed unnaturally in space and density. We present chromosomal and microsatellite evidence to substantiate the first recorded instance of interspecific hybridisation between them. The data suggest that the genetic integrity of the African rhinoceros species probably depends on differences in behavioural and ecological preferences that offer semipermeable reproductive isolation. We caution against the retention of both species in captive and other population situations where disruption of species-specific behaviour patterns may result if there is an unnatural composition in terms of age and sex, and where access to conspecific mates is restricted or absent.

Keywords

African rhinoceroses FISH hybrids microsatellites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, SM, Houlden, BA 1999Isolation and characterization of microsatellite markers in the black rhinoceros (Diceros bicornis)Mol Ecol.815591561PubMedGoogle Scholar
  2. Cunningham , J, Harley, EH, O’Ryan, C 1999Isolation and characterisation of microsatellite loci in black rhinoceros (Diceros bicornis)Electrophoresis2017781780PubMedGoogle Scholar
  3. Emslie, RH, Brooks, PM 1999African Rhino: Status Survey and Conservation Action PlanIUCN/SSC African Rhino Specialist Group IUCN GlandSwitzerland and Cambridge, UKix + 92ppGoogle Scholar
  4. Foose T (1993) Global management of rhinos. In Proceedings of a Conference: Rhinoceros Biology and Conservation (ed. Ryder OA), pp 32–47. Zoological Society of San Diego. Google Scholar
  5. Gray, AP 1971Mammalian hybridsCommonwealth Agricultural Bureaux SloughEnglandGoogle Scholar
  6. Haldane, JS 1922Sex ratio and unisexual sterility in hybrid animalsJ. Genet.12101109CrossRefGoogle Scholar
  7. Houck, ML, Ryder, OA, Vahala, J, Kock, RA, Oosterhuis, JE 1994Diploid chromosome number and chromosomal variation in the White rhinoceros (Ceratotherium simum)J. Hered.853034PubMedGoogle Scholar
  8. Leader-Williams N (1993) Theory and pragmatism in the conservation of rhinos. In Proceedings of a Conference: Rhinoceros Biology and Conservation (ed. Ryder OA), pp 69–81. Zoological Society of San Diego.Google Scholar
  9. Leader-Williams, N, Brett, RA, Brookes, M, Craig, I, duToit, RF, Emslie, RH, Knight, MH, Stanley-Price, MR, Stockil, C 1997A scheme for differentiating and defining the different situations under which live rhinos are conservedPachyderm232428Google Scholar
  10. Lindemann H (1982) African rhinoceroses in captivity. Thesis, University of Copenhagen.Google Scholar
  11. Owen-Smith RN (1988) Megaherbivores–The Influence of Very Large Body Size on Ecology. Cambridge University Press.Google Scholar
  12. Paetkau, D, Waits, LP, Clarkson, PL, Craighead, L, Strobeck, C 1997An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populationsGenetics14719431957PubMedGoogle Scholar
  13. Seabright, M 1971A rapid banding technique for human chromosomeLancet2971972CrossRefPubMedGoogle Scholar
  14. Smithers, R H N 1983The Mammals of the Southern African SubregionUniversity of PretoriaPretoriaGoogle Scholar
  15. Stanley Price MR (1993) What will it take to save the rhino. In Proceedings of A Conference: Rhinoceros Biology and Conservation (ed. Ryder OA), pp. 48–68. Zoological Society of San Diego. Google Scholar
  16. Sumner, A 1972A simple technique for demonstrating centromeric heterochromatinExp. Cell Res.75304306PubMedGoogle Scholar
  17. Tougard, C, Delefosse, T, Hanni, C, Montgelard, C 2001Phylogenetic relationships of the five extant rhinoceros species (Rhinocerotidae, Perissodactyla) based on mitochondrial cytochrome b and 12S rRNA genesMol. Phylogenet. Evol.193444PubMedGoogle Scholar
  18. Trifonov, V, Yang, F, Ferguson-Smith, MA, Robinson, TJ 2003Chromosome painting in the Perissodactyla: Delimitation of homologous regions in Burchell’s zebra (Equus burchelli) and the White (Ceratotherium simum) and Black Rhinoceros (Diceros bicornis)Cytogenet. Genome Res.103104110PubMedGoogle Scholar
  19. Yang , F, Fu, B, O’Brien, PCM, Robinson, TJ, Ryder, OA, Ferguson-Smith, MA 2003Karyotypic relationships of horses and zebras: Results of cross-species chromosome paintingCytogenet Genome Res.102235243PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • T.J. Robinson
    • 1
  • V. Trifonov
    • 1
  • I. Espie
    • 2
  • E.H. Harley
    • 3
  1. 1.Evolutionary Genomics Group, Department of ZoologyUniversity of StellenboschMatielandSouth Africa
  2. 2.National Zoological Gardens of South AfricaPretoriaSouth Africa
  3. 3.Department of Clinical Laboratory SciencesUniversity of Cape TownObservatorySouth Africa

Personalised recommendations