Advertisement

A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs

  • Enrico Bettiol
  • Lucas Létocart
  • Francesco RinaldiEmail author
  • Emiliano Traversi
Article
  • 24 Downloads

Abstract

Many real-world applications can usually be modeled as convex quadratic problems. In the present paper, we want to tackle a specific class of quadratic programs having a dense Hessian matrix and a structured feasible set. We hence carefully analyze a simplicial decomposition like algorithmic framework that handles those problems in an effective way. We introduce a new master solver, called Adaptive Conjugate Direction Method, and embed it in our framework. We also analyze the interaction of some techniques for speeding up the solution of the pricing problem. We report extensive numerical experiments based on a benchmark of almost 1400 instances from specific and generic quadratic problems. We show the efficiency and robustness of the method when compared to a commercial solver (Cplex).

Keywords

Simplicial decomposition Convex quadratic programming Dense Hessian matrix Column generation 

Mathematics Subject Classification

65K05 90C20 90C25 

Notes

Supplementary material

References

  1. 1.
    Beasley, J.E.: Portfolio optimization data. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/ (2016)
  2. 2.
    Bertsekas, D.P.: Convex Optimization Algorithms. Athena Scientific, Belmont (2015)zbMATHGoogle Scholar
  3. 3.
    Bertsekas, D.P., Yu, H.: A unifying polyhedral approximation framework for convex optimization. SIAM J. Optim. 21(1), 333–360 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Buchheim, C., Traversi, E.: Quadratic combinatorial optimization using separable underestimators. INFORMS J. Comput. 30(3), 424–437 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cesarone, F., Tardella, F.: Portfolio datasets. http://host.uniroma3.it/docenti/cesarone/datasetsw3_tardella.html (2010)
  8. 8.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4(1), 63–86 (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
    Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Trans. Algorithms (TALG) 6(4), 63 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Condat, L.: Fast projection onto the simplex and the l1-ball. Math. Program. 158(1), 575–585 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cristofari, A.: An almost cyclic 2-coordinate descent method for singly linearly constrained problems. Comput. Optim. Appl. 73(2), 411–452 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Cristofari, A., De Santis, M., Lucidi, S., Rinaldi, F.: A two-stage active-set algorithm for bound-constrained optimization. J. Optim. Theory Appl. 172(2), 369–401 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Curtis, F.E., Han, Z., Robinson, D.P.: A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization. Comput. Optim. Appl. 60(2), 311–341 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    De Santis, M., Di Pillo, G., Lucidi, S.: An active set feasible method for large-scale minimization problems with bound constraints. Comput. Optim. Appl. 53(2), 395–423 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Demetrescu, C., Goldberg, A.V., Johnson, D.S.: The Shortest Path Problem: Ninth DIMACS Implementation Challenge, vol. 74. American Mathematical Soc., Providence (2009)zbMATHCrossRefGoogle Scholar
  17. 17.
    Desaulniers, G., Desrosiers, J., Solomon, M.M.: Column Generation, vol. 5. Springer, Berlin (2006)zbMATHGoogle Scholar
  18. 18.
    Djerdjour, M., Mathur, K., Salkin, H.: A surrogate relaxation based algorithm for a general quadratic multi-dimensional knapsack problem. Oper. Res. Lett. 7(5), 253–258 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Drake, J.: Benchmark instances for the multidimensional knapsack problem (2015)Google Scholar
  21. 21.
    Elzinga, J., Moore, T.G.: A central cutting plane algorithm for the convex programming problem. Math. Program. 8(1), 134–145 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpoases: a parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti, L., Lodi, A., Misener, R., Mittelmann, H., Sahinidis, N., Vigerske, S., Wiegele, A.: Qplib: a library of quadratic programming instances. Math. Program. Comput. 11, 237–265 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Glover, F., Kochenberger, G.: Critical event tabu search for multidimensional knapsack problems. In: Meta-Heuristics, pp. 407–427. Springer (1996)Google Scholar
  25. 25.
    Glover, F., Kochenberger, G., Alidaee, B., Amini, M.: Solving quadratic knapsack problems by reformulation and tabu search: single constraint case. In: Combinatorial and Global Optimization, pp. 111–121. World Scientific (2002)Google Scholar
  26. 26.
    Goffin, J.L., Gondzio, J., Sarkissian, R., Vial, J.P.: Solving nonlinear multicommodity flow problems by the analytic center cutting plane method. Math. Program. 76(1), 131–154 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Goffin, J.L., Vial, J.P.: Cutting planes and column generation techniques with the projective algorithm. J. Optim. Theory Appl. 65(3), 409–429 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Goffin, J.L., Vial, J.P.: On the computation of weighted analytic centers and dual ellipsoids with the projective algorithm. Math. Program. 60(1), 81–92 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218(3), 587–601 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Gondzio, J., González-Brevis, P.: A new warmstarting strategy for the primal-dual column generation method. Math. Program. 152(1–2), 113–146 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Gondzio, J., González-Brevis, P., Munari, P.: New developments in the primal-dual column generation technique. Eur. J. Oper. Res. 224(1), 41–51 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Gondzio, J., González-Brevis, P., Munari, P.: Large-scale optimization with the primal–dual column generation method. Math. Program. Comput. 8(1), 47–82 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Gondzio, J., Kouwenberg, R.: High-performance computing for asset-liability management. Oper. Res. 49(6), 879–891 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Gondzio, J., du Merle, O., Sarkissian, R., Vial, J.P.: Accpm—a library for convex optimization based on an analytic center cutting plane method. Eur. J. Oper. Res. 94(1), 206–211 (1996)CrossRefGoogle Scholar
  35. 35.
    Gondzio, J., Sarkissian, R., Vial, J.P.: Using an interior point method for the master problem in a decomposition approach. Eur. J. Oper. Res. 101(3), 577–587 (1997)zbMATHCrossRefGoogle Scholar
  36. 36.
    Gondzio, J., Vial, J.P., et al.: Warm start and -subgradients in a cutting plane scheme for block-angular linear programs. Comput. Optim. Appl. 14, 17–36 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Grippo, L., Lampariello, F., Lucidi, S.: A truncated newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60(3), 401–419 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numer. Math. 59(1), 779–805 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM J. Optim. 17(2), 526–557 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Hearn, D.W., Lawphongpanich, S., Ventura, J.A.: Restricted simplicial decomposition: computation and extensions. In: Computation Mathematical Programming, pp. 99–118 (1987)Google Scholar
  42. 42.
    Holloway, C.A.: An extension of the Frank and Wolfe method of feasible directions. Math. Program. 6(1), 14–27 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
  44. 44.
    Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization, vol. 1133. Springer, Berlin (2006)zbMATHGoogle Scholar
  45. 45.
    Levin, A.Y.: On an algorithm for the minimization of convex functions. Sov. Math. Dokl. 160, 1244–1247 (1965)Google Scholar
  46. 46.
    Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)Google Scholar
  47. 47.
    Michelot, C.: A finite algorithm for finding the projection of a point onto the canonical simplex of \({\mathbb{R}}^n\). J. Optim. Theory Appl. 50(1), 195–200 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Munari, P., Gondzio, J.: Using the primal–dual interior point algorithm within the branch-price-and-cut method. Comput. Oper. Res. 40(8), 2026–2036 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)zbMATHCrossRefGoogle Scholar
  50. 50.
    Newman, D.J.: Location of the maximum on unimodal surfaces. J. ACM (JACM) 12(3), 395–398 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Nocedal, J., Wright, S.J.: Conjugate gradient methods. In: Numerical Optimization, pp. 101–134 (2006)Google Scholar
  52. 52.
    Nocedal, J., Wright, S.J.: Sequential Quadratic Programming. Springer, Berlin (2006)Google Scholar
  53. 53.
    Palomar, D.P., Eldar, Y.C.: Convex Optimization in Signal Processing and Communications. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  54. 54.
    Patriksson, M.: The Traffic Assignment Problem: Models and Methods. Courier Dover Publications, Mineola (2015)Google Scholar
  55. 55.
    Rostami, B., Chassein, A., Hopf, M., Frey, D., Buchheim, C., Malucelli, F., Goerigk, M.: The quadratic shortest path problem: complexity, approximability, and solution methods. Eur. J. Oper. Res. 268(2), 473–485 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Rostami, B., Malucelli, F., Frey, D., Buchheim, C.: On the quadratic shortest path problem. In: International Symposium on Experimental Algorithms, pp. 379–390. Springer (2015)Google Scholar
  57. 57.
    Syam, S.S.: A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals. Eur. J. Oper. Res. 108(1), 196–207 (1998)zbMATHCrossRefGoogle Scholar
  58. 58.
    Tarasov, S., Khachiian, L., Erlikh, I.: The method of inscribed ellipsoids. Dokl. Akad. Nauk SSSR 298(5), 1081–1085 (1988)MathSciNetGoogle Scholar
  59. 59.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Ventura, J.A., Hearn, D.W.: Restricted simplicial decomposition for convex constrained problems. Math. Program. 59(1), 71–85 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Von Hohenbalken, B.: Simplicial decomposition in nonlinear programming algorithms. Math. Program. 13(1), 49–68 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    WolframAlpha: Mathematica (version 11.3). http://www.wolfram.com/mathematica/ (2018)
  63. 63.
    Wright, M.: The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull. Am. Math. Soc. 42(1), 39–56 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Wright, S.J.: Primal–Dual Interior-Point Methods. SIAM, Philadelphia (1997)zbMATHCrossRefGoogle Scholar
  65. 65.
    Ye, Y.: Interior Point Algorithms: Theory and Analysis, vol. 44. Wiley, Hoboken (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LIPN, CNRS, (UMR7030)Université Paris 13, Sorbonne Paris CitéVilletaneuseFrance
  2. 2.Dipartimento di Matematica “Tullio Levi-Civita”Università di PadovaPaduaItaly

Personalised recommendations