Advertisement

Computational Optimization and Applications

, Volume 74, Issue 3, pp 645–667 | Cite as

Mesh adaptive direct search with simplicial Hessian update

  • Árpád BűrmenEmail author
  • Iztok Fajfar
Article
  • 58 Downloads

Abstract

Recently a second directional derivative-based Hessian updating formula was used for Hessian approximation in mesh adaptive direct search (MADS). The approach combined with a quadratic program solver significantly improves the performance of MADS. Unfortunately it imposes some strict requirements on the position of points and the order in which they are evaluated. The subject of this paper is the introduction of a Hessian update formula that utilizes the points from the neighborhood of the incumbent solution without imposing such strict restrictions. The obtained approximate Hessian can then be used for constructing a quadratic model of the objective and the constraints. The proposed algorithm was compared to the reference implementation of MADS (NOMAD) on four sets of test problems. On all but one of them it outperformed NOMAD. The biggest performance difference was observed on constrained problems. To validate the algorithm further the approach was tested on several real-world optimization problems arising from yield approximation and worst case analysis in integrated circuit design. On all tested problems the proposed approach outperformed NOMAD.

Keywords

Derivative-free optimization Hessian update Random matrices Uniform distribution 

Mathematics Subject Classification

90C56 65K05 15A52 

Notes

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0246-ICT4QoL—Information and Communications Technologies for Quality of Life). The authors would also like to thank two anonymous reviewers for their constructive remarks and comments.

References

  1. 1.
    Abramson, M.A., Audet, C.: Convergence of mesh adaptive direct search to second-order stationary points. SIAM J. Optim. 17(2), 606–619 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abramson, M.A., Audet, C., Dennis Jr., J.E., Le Digabel, S.: OrthoMADS: a deterministic MADS instance with orthogonal directions. SIAM. J. Optim. 20(2), 948–966 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Amaioua, N., Audet, C., Conn, A.R., Le Digabel, S.: Efficient solution of quadratically constrained quadratic subproblems within a direct-search algorithm. Eur. J. Oper. Res. 268(1), 13–24 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Andersen, M.S., Dahl, J., Vandenberghe, L.: CVXOPT, Release 1.1.6. http://cvxopt.org/userguide/index.html (2016)
  5. 5.
    Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Audet, C., Dennis Jr., J.E.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20(1), 445–472 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Audet, C., Ianni, A., Le Digabel, S., Tribes, C.: Reducing the number of function evaluations in mesh adaptive direct search algorithms. SIAM J. Optim. 24(2), 621–642 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bogachev, V.I.: Measure Theory. Springer, Berlin (2006)Google Scholar
  9. 9.
    Bűrmen, Á., Puhan, J., Tuma, T.: Grid restrained Nelder–Mead algorithm. Comput. Optim. Appl. 34(3), 359–375 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bűrmen, Á., Tuma, T.: Generating poll directions for mesh adaptive direct search with realizations of a uniformly distributed random orthogonal matrix. Pac. J. Optim. 12(4), 813–832 (2016)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bűrmen, Á., Olenšek, J., Tuma, T.: Mesh adaptive direct search with second directional derivative-based Hessian update. Comput. Optim. Appl. 62, 693–715 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Clarke, F.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1983)zbMATHGoogle Scholar
  13. 13.
    Conn, A.R., Le Digabel, S.: Use of quadratic models with mesh-adaptive direct search for constrained black box optimization. Optim. Methods Softw. 28(1), 139–158 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Coope, I.D., Price, C.J.: Frame-based methods for unconstrained optimization. J. Optim. Theory Appl. 107(2), 261–274 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Custódio, A.L., Vincente, L.N.: Using sampling and simplex derivatives in patters search methods. SIAM J. Optim. 18(2), 537–555 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Conn, A.R., Scheinberg, K., Vincente, L.N.: Introduction to Derivative-Free Optimization. SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  17. 17.
    Frimannslund, L., Steihaug, T.: A generating set search method using curvature information. Comput. Optim. Appl. 38(1), 105–121 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Graeb, H.E.: Analog Design Centering and Sizing. Springer, Berlin (2007)Google Scholar
  19. 19.
    Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Le Digabel, S.: Algorithm 909: NOMAD nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44:1–44:15 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Leventhal, D., Lewis, A.S.: Randomized Hessian estimation and directional search. Optimization 60, 329–345 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM. J. Optim. 20(1), 172–191 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)zbMATHGoogle Scholar
  24. 24.
    Oliphant, T.E.: Python for scientific computing. Comput. Sci. Eng. 9(3), 10–20 (2007)CrossRefGoogle Scholar
  25. 25.
    Powell, M.J.D.: Least Frobenius norm updating of quadratic models that satisfy interpolation conditions. Math. Prog. 100, 183–215 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rockafellar, R.: Generalized directional derivatives and subgradients of nonconvex functions. Can. J. Math. 32(2), 257–280 (1980)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Stewart, G.W.: The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM. J. Numer. Anal. 17(3), 403–409 (1980)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Van Dyke, B., Asaki, T.J.: Using QR decomposition to obtain a new instance of mesh adaptive direct search with uniformly distributed polling directions. J. Optim. Theory App. 159(3), 805–821 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Van Rossum, G., et al: The Python language reference. Python Software Foundation (2014). http://docs.python.org/
  30. 30.
    Vincente, L., Custódio, A.: Analysis of direct searches for discontinuous functions. Math. Prog. 133(1–2), 299–325 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations