# An auction-based approach for the re-optimization shortest path tree problem

- 57 Downloads

## Abstract

The shortest path tree problem is one of the most studied problems in network optimization. Given a directed weighted graph, the aim is to find a shortest path from a given origin node to any other node of the graph. When any change occurs (i.e., the origin node is changed, some nodes/arcs are added/removed to/from the graph, the cost of a subset of arcs is increased/decreased), in order to determine a (still) optimal solution, two different strategies can be followed: a re-optimization algorithm is applied starting from the current optimal solution or a new optimal solution is built from scratch. Generally speaking, the Re-optimization Shortest Path Tree Problem (R-SPTP) consists in solving a sequence of shortest path problems, where the *k**th* problem differs only slightly from the \((k-1){th}\) one, by exploiting the useful information available after each shortest path tree computation. In this paper, we propose an exact algorithm for the R-SPTP, in the case of origin node change. The proposed strategy is based on a dual approach, which adopts a strongly polynomial auction algorithm to extend the solution under construction. The approach is evaluated on a large set of test problems. The computational results underline that it is very promising and outperforms or at least is not worse than the solution approaches reported in the literature.

## Keywords

Networks Re-optimization Shortest path Auction approach## Notes

## References

- 1.Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Chapter iv network flows. Handb. Oper. Res. Manag. Sci.
**1**, 211–369 (1989)Google Scholar - 2.Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Englewood Cliffs, NJ (1993) zbMATHGoogle Scholar
- 3.Bazaraa, M., Langley, R.: A dual shortest path algorithm. SIAM J. Appl. Math.
**26**(3), 496–501 (1974)MathSciNetzbMATHGoogle Scholar - 4.Bertsekas, D.P.: A Distributed Algorithm for the Assignment Problem. Laboratory for Information and Decision Systems Working Paper, M.I.T., Cambridge, MA (1979)Google Scholar
- 5.Bertsekas, D.P.: An auction algorithm for shortest paths. SIAM J. Optim.
**1**(4), 425–447 (1991)MathSciNetzbMATHGoogle Scholar - 6.Bertsekas, D.: Linear Networks Optimization: Algorithms and Codes. MIT Press (1991)Google Scholar
- 7.Bertsekas, D.P., Tseng, P., et al.: RELAX-IV: A Faster Version of the RELAX Code for Solving Minimum Cost Flow Problems. Massachusetts Institute of Technology, Laboratory for Information and Decision Systems Cambridge, Cambridge (1994)Google Scholar
- 8.Bertsekas, D.P., Pallottino, S., Scutellà, M.G.: Polynomial auction algorithms for shortest paths. Comput. Optim. Appl.
**4**(2), 99–125 (1995)MathSciNetzbMATHGoogle Scholar - 9.Bertsekas, D.P., Guerriero, F., Musmanno, R.: Parallel asynchronous label-correcting methods for shortest paths. J. Optim. Theory Appl.
**88**(2), 297–320 (1996)MathSciNetzbMATHGoogle Scholar - 10.Buriol, L.S., Resende, M.G., Thorup, M.: Speeding up dynamic shortest-path algorithms. INFORMS J. Comput.
**20**(2), 191–204 (2008)MathSciNetzbMATHGoogle Scholar - 11.Cerulli, R., De Leone, R., Piacente, G.: A modified auction algorithm for the shortest path problem. Optim. Methods Softw.
**4**(3), 209–224 (1994)Google Scholar - 12.Cerulli, R., Festa, P., Raiconi, G., Visciano, G.: The auction technique for the sensor based navigation planning of an autonomous mobile robot. J. Intell. Robot. Syst. Theory Appl.
**21**(4), 373–395 (1998)zbMATHGoogle Scholar - 13.Cerulli, R., Festa, P., Raiconi, G.: Shortest paths in randomly time varying networks. In: IEEE Conference on Intelligent Transportation Systems, pp. 854–859 (2001)Google Scholar
- 14.Cerulli, R., Festa, P., Raiconi, G.: Shortest path auction algorithm without contractions using virtual source concept. Comput. Optim. Appl.
**26**(2), 191–208 (2003)MathSciNetzbMATHGoogle Scholar - 15.Chan, E.P., Yang, Y.: Shortest path tree computation in dynamic graphs. IEEE Trans. Comput.
**58**(4), 541–557 (2009)MathSciNetzbMATHGoogle Scholar - 16.Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: theory and experimental evaluation. Math. Program.
**73**(2), 129–174 (1996)MathSciNetzbMATHGoogle Scholar - 17.Cherkassky, B.V., Goldberg, A.V., Silverstein, C.: Buckets, heaps, lists, and monotone priority queues. SIAM J. Comput.
**28**(4), 1326–1346 (1999)MathSciNetzbMATHGoogle Scholar - 18.Christofides, N.: An Algorithmic Approach. Academic Press Inc., New York (1975)zbMATHGoogle Scholar
- 19.D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Dynamically maintaining shortest path trees under batches of updates. In: Moscibroda, T., Rescigno, A.A. (eds.) International Colloquium on Structural Information and Communication Complexity, pp. 286–297. Springer (2013) Google Scholar
- 20.Demetrescu, C., Goldberg, A., Johnson, D.: 9th Dimacs Implementation Challenge-Shortest Paths. American Mathematical Society, Providence (2006)Google Scholar
- 21.Demetrescu, C., Goldberg, A.V., Johnson, D.S.: The Shortest Path Problem: Ninth DIMACS Implementation Challenge, vol. 74. American Mathematical Society, Providence (2009)zbMATHGoogle Scholar
- 22.Di Puglia Pugliese, L., Guerriero, F.: A computational study of solution approaches for the resource constrained elementary shortest path problem. Ann. Oper. Res.
**201**(1), 131–157 (2012)MathSciNetzbMATHGoogle Scholar - 23.Di Puglia Pugliese, L., Guerriero, F.: A survey of resource constrained shortest path problems: exact solution approaches. Networks
**62**(3), 183–200 (2013)MathSciNetzbMATHGoogle Scholar - 24.Dial, R.B.: A probabilistic multipath traffic assignment model which obviates path enumeration. Transp. Res.
**5**(2), 83–111 (1971)Google Scholar - 25.Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
**1**(1), 269–271 (1959)MathSciNetzbMATHGoogle Scholar - 26.Ferone, D., Festa, P., Guerriero, F., Laganá, D.: The constrained shortest path tour problem. Comput. Oper. Res.
**74**, 64–77 (2016)MathSciNetzbMATHGoogle Scholar - 27.Ferone, D., Festa, P., Napoletano, A., Pastore, T.: Shortest paths on dynamic graphs: a survey. Pesqui. Oper.
**37**(3), 487–508 (2017)Google Scholar - 28.Festa, P., Pallottino, S.: A Pseudo-Random Networks Generator. Technical report, Department of Mathematics and Applications “R. Caccioppoli”, University of Napoli FEDERICO II, Italy (2003)Google Scholar
- 29.Florian, M., Nguyen, S., Pallottino, S.: A dual simplex algorithm for finding all shortest paths. Networks
**11**(4), 367–378 (1981)MathSciNetzbMATHGoogle Scholar - 30.Gallo, G.: Reoptimization procedures in shortest path problem. Riv. Mat. Sci. Econ. Soc.
**3**(1), 3–13 (1980)MathSciNetzbMATHGoogle Scholar - 31.Gallo, G., Pallottino, S.: A new algorithm to find the shortest paths between all pairs of nodes. Discrete Appl. Math.
**4**(1), 23–35 (1982). https://doi.org/10.1016/0166-218X(82)90031-2. ISSN: 0166218XMathSciNetCrossRefzbMATHGoogle Scholar - 32.Granat, J., Guerriero, F.: The interactive analysis of the multicriteria shortest path problem by the reference point method. Eur. J. Oper. Res.
**151**(1), 103–118 (2003)MathSciNetzbMATHGoogle Scholar - 33.Ioachim, I., Gelinas, S., Soumis, F., Desrosiers, J.: A dynamic programming algorithm for the shortest path problem with time windows and linear node costs. Networks
**31**(3), 193–204 (1998)MathSciNetzbMATHGoogle Scholar - 34.Jayakrishnan, R., Mahmassani, H.S., Hu, T.-Y.: An evaluation tool for advanced traffic information and management systems in urban networks. Transp. Res. Part C Emerg. Technol.
**2**(3), 129–147 (1994)Google Scholar - 35.Koenig, S., Likhachev, M.: D* lite. In Proceedings of the Eighteenth National Conference on Artificial Intelligence, Edmonton, Alberta, Canada, 28 July 2002–01 August 2002, pp. 476–483.Google Scholar
- 36.Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain. IEEE Trans. Robot.
**21**(3), 354–363 (2005)Google Scholar - 37.Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning a. Artif. Intell.
**155**(1–2), 93–146 (2004)MathSciNetzbMATHGoogle Scholar - 38.Magnanti, T.L., Wong, R.T.: Network design and transportation planning: models and algorithms. Transp. Sci.
**18**(1), 1–55 (1984)Google Scholar - 39.Nannicini, G., Baptiste, P., Krob, D., Liberti, L.: Fast paths in dynamic road networks. Proc. ROADEF
**8**, 1–14 (2008)zbMATHGoogle Scholar - 40.Nguyen, S., Pallottino, S., Scutellà, M.G.: A new dual algorithm for shortest path reoptimization. In: Gendreau, M., Marcotte, P. (eds.) Transportation and Network Analysis: Current Trends, pp. 221–235. Springer, Boston, MA (2002)Google Scholar
- 41.Pallottino, S., Scutella, M.G.: Strongly polynomial auction algorithms for shortest paths. Ric. Op.
**60**, 33–53 (1991)Google Scholar - 42.Pallottino, S., Scutellà, M.G.: Dual algorithms for the shortest path tree problem. Networks
**26**(2), 125–133 (1997)MathSciNetzbMATHGoogle Scholar - 43.Pallottino, S., Scutellá, M.G.: Shortest path algorithms in transportation models: classical and innovative aspects. In: Marcotte, P., Nguyen, S. (eds.) Equilibrium and Advanced Transportation Modelling, pp. 245–281. Springer, Boston, MA (1998)zbMATHGoogle Scholar
- 44.Pallottino, S., Scutellá, M.G.: A new algorithm for reoptimizing shortest paths when the arc costs change. Oper. Res. Lett.
**31**(2), 149–160 (2003)MathSciNetzbMATHGoogle Scholar - 45.Pettie, S., Ramachandran, V.: Command Line Tools Generating Various Families of Random Graphs. American Mathematical Society, Providence (2006)Google Scholar
- 46.Pham, P.P., Perreau, S.: Performance analysis of reactive shortest path and multipath routing mechanism with load balance. In: INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, vol. 1, pp. 251–259. IEEE (2003)Google Scholar
- 47.Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the shortest-path problem. J. Algorithms
**21**(2), 267–305 (1996)MathSciNetzbMATHGoogle Scholar - 48.Schwartz, M.: Telecommunication Networks: Protocols, Modeling and Analysis, vol. 7. Addison-Wesley, Reading (1987)Google Scholar
- 49.Shi, N., Zhou, S., Wang, F., Tao, Y., Liu, L.: The multi-criteria constrained shortest path problem. Transp. Res. Part E Logist. Transp. Rev.
**101**, 13–29 (2017)Google Scholar - 50.Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’94), vol. 4, pp. 3310 – 3317 (1994)Google Scholar
- 51.Stentz, A.: The focussed \(\text{d}^{*}\) algorithm for real-time replanning. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence—Volume 2, IJCAI’95, pp. 1652–1659, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. ISBN: 1-55860-363-8. http://dl.acm.org/citation.cfm?id=1643031.1643113
- 52.Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. SIAM, Philadelphia (2014)zbMATHGoogle Scholar
- 53.Zhang, X., Zhang, Z., Zhang, Y., Wei, D., Deng, Y.: Route selection for emergency logistics management: a bio-inspired algorithm. Saf. Sci.
**54**, 87–91 (2013)Google Scholar