Advertisement

The Uzawa-MBB type algorithm for nonsymmetric saddle point problems

  • Zhitao XuEmail author
  • Li Gao
Article
  • 23 Downloads

Abstract

The Uzawa type algorithms have shown themselves to be competitive for solving large and sparse saddle point problems. They reduce the original problem to a lower-dimensional linear system and solve the derived equation instead. In this paper, we propose new Uzawa-MBB type and preconditioned Uzawa-MBB type algorithms for the nonsymmetric saddle point problems. The main contributions of the paper are that both of the new algorithms are constructed from optimization algorithms, use a special descent direction based on Xu et al. (A new Uzawa-exact type algorithm for nonsymmetric saddle point problems, 2018. arXiv preprint arXiv:1802.04135 ), and combine the modified Barzilai–Borwein method with modified GLL line search strategy to solve the derived least squares problem. In addition, we analyze the convergence of the two new algorithms. Applications to finite element discretization of Navier–Stokes equation with an unstable pair of approximation spaces, i.e. Q1–P0 pair, are discussed and the results of the numerical experiments of applying our new algorithms are reported, which demonstrate the competitive performance of the preconditioned Uzawa-MBB type algorithms with Krylov subspace methods.

Keywords

Nonsymmetric saddle point problems Uzawa type algorithms Least squares problems Barzilai–Borwein method Precondition Navier–Stokes equations 

Mathematics Subject Classification

65K05 65F10 65N22 

Notes

Acknowledgements

The authors gratefully acknowledge the reviewers for their careful reading of the manuscript and insightful comments, which significantly improve the presentation of the paper, especially the numerical performance of the algorithms.

References

  1. 1.
    Xu, Z., Jiang, T., Gao, L.: A New Uzawa-exact type Algorithm for Nonsymmetric Saddle Point Problems. arXiv preprint arXiv:1802.04135 (2018)
  2. 2.
    Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 739. Springer, New York (1981)zbMATHGoogle Scholar
  3. 3.
    Karakashian, O.A.: On a Galerkin–Larange multipliear method for the stationary Navier–Stokes equations. SIAM J. Numer. Anal. 19, 9089–923 (1982)CrossRefGoogle Scholar
  4. 4.
    Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-Linear Programming. Stanford University Press, Stanford, California (1958)zbMATHGoogle Scholar
  5. 5.
    Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Uzawa type algorithms for nonsymmetric saddle point problems. Math. Comput. 69, 667–689 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cao, Z.H.: Fast Uzawa algorithms for solving nonsymmetric saddle point problems. Numer. Linear Algebra Appl. 11, 1–24 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sonneveld, P., Van Gijzen, M.B.: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM J. Sci. Comput. 31(2), 1035–1062 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cauchy, A.: Méthode générale pour la résolution des systemes d’équations simultanées. C. R. Sci. Paris 25, 536–538 (1847)Google Scholar
  14. 14.
    Wright, S., Nocedal, J.: Numerical optimization. Science 35, 67–68 (1999)zbMATHGoogle Scholar
  15. 15.
    Birgina, E.G., Evtusenko, Y.G.: Automatic differentiation and spectral projected gradient methods for optimal control problems. Optim. Methods Softw. 10(2), 125–146 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Birgin, E.G., Martinez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Liu, W., Dai, Y.H.: Minimization algorithms based on supervisor and searcher cooperation. J. Optim. Theory Appl. 111(2), 359–379 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22(1), 1–10 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem. 14(1), 114–120 (1993)CrossRefGoogle Scholar
  20. 20.
    Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7(1), 26–33 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Elemnet Methods. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  23. 23.
    Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13(3), 181–201 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34(3), 1072–1092 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. In: Numerical Mathematics & Scientific Computation. Oxford University Press, Oxford (2014)Google Scholar
  26. 26.
    Silvester, D.J., Elman, H.C., Ramage, A.: IFISS: incompressible flow iterative solution software. http://www.manchester.ac.uk/ifiss/ (2012)
  27. 27.
    Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations