Advertisement

Maximum–norm a posteriori error estimates for an optimal control problem

  • Enrique Otárola
  • Richard RankinEmail author
  • Abner J. Salgado
Article
  • 24 Downloads

Abstract

We analyze a reliable and efficient max-norm a posteriori error estimator for a control-constrained, linear–quadratic optimal control problem. The estimator yields optimal experimental rates of convergence within an adaptive loop.

Keywords

Linear–quadratic optimal control problem Finite element methods A posteriori error analysis Maximum–norm 

Mathematics Subject Classification

49J20 49M25 65K10 65N15 65N30 65N50 65Y20 

Notes

Acknowledgements

E. Otárola was supported in part by CONICYT through FONDECYT project 11180193. A. J. Salgado was supported in part by NSF Grant DMS-1418784. R. Rankin was supported in part by Universidad de Chile through BASAL PFB03 CMM project. The authors would like to thank Alejandro Allendes.

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Allendes, A., Otárola, E., Rankin, R.: A posteriori error estimation for a PDE-constrained optimization problem involving the generalized Oseen equations. SIAM J. Sci. Comput. 40(4), A2200–A2233 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Allendes, A., Otárola, E., Rankin, R., Salgado, A.J.: An a posteriori error analysis for an optimal control problem with point sources. ESAIM Math. Model. Numer. Anal. 52(5), 1617–1650 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Apel, T., Rösch, A.A., Sirch, D.: \({L}^\infty \)-error estimates on graded meshes with application to optimal control. SIAM J. Control Optim. 48(3), 1771–1796 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Camacho, F., Demlow, A.: \(L_2\) and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces. IMA J. Numer. Anal. 35(3), 1199–1227 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dari, E., Durán, R.G., Padra, C.: Maximum norm error estimators for three-dimensional elliptic problems. SIAM J. Numer. Anal. 37(2), 683–700 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dauge, M.: Neumann and mixed problems on curvilinear polyhedra. Integral Eqs. Oper. Theory 15(2), 227–261 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Demlow, A., Georgoulis, E.H.: Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 50(5), 2159–2181 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Demlow, A., Kopteva, N.: Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems. Numer. Math. 133(4), 707–742 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Demlow, A., Larsson, S.: Local pointwise a posteriori gradient error bounds for the Stokes equations. Math. Comp. 82(282), 625–649 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \(W^{1}_{\infty }\) norm for finite element methods on graded meshes. Math. Comp. 81(278), 743–764 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Eriksson, K.: An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models Methods Appl. Sci. 4(3), 313–329 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Frehse, J., Rannacher, R.: Eine \(L^{1}\)-Fehlerabschätzung für diskrete Grundlösungen in der Methode der finiten Elemente pp. 92–114. Bonn. Math. Schrift., No. 89 (1976)Google Scholar
  16. 16.
    Grisvard, P.: Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, vol. 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). Reprint of the 1985 original [ MR0775683], With a foreword by Susanne C. BrennerGoogle Scholar
  17. 17.
    Guzmán, J., Leykekhman, D., Rossmann, J., Schatz, A.: Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods. Numer. Math. 112(2), 221–243 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hintermüller, M., Hoppe, R.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hintermüller, M., Hoppe, R., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: Control Optim. Calc. of Var. 14, 540–560 (2008)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4(2), 203–207 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kohls, K., Rösch, A., Siebert, K.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52(3), 1832–1861 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Leykekhman, D., Vexler, B.: Finite element pointwise results on convex polyhedral domains. SIAM J. Numer. Anal. 54(2), 561–587 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Li, R., Liu, W., Yan, N.: A posteriori error estimates of recovery type for distributed convex optimal control problems. J. Sci. Comput. 33(2), 155–182 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lions, J.L.: Optimal control of systems governed by partial differential equations. Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band, vol. 170. Springer, New York (1971)Google Scholar
  26. 26.
    Liu, W., Yan, N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Maz’ya, V., Rossmann, J.: Elliptic equations in polyhedral domains, Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence, RI (2010)Google Scholar
  28. 28.
    Meyer, C., Rademacher, A., Wollner, W.: Adaptive optimal control of the obstacle problem. SIAM J. Sci. Comput. 37(2), 918–945 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Meyer, C., Rösch, A.: \({L}^{\infty }\)-estimates for approximated optimal control problems. SIAM J. Control Optim. 44(5), 1636–1649 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Natterer, F.: über die punktweise Konvergenz finiter Elemente. Numer. Math. 25(1), 67–77 (1975/1976)Google Scholar
  31. 31.
    Nitsche, J.: Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme. Arch. Rational Mech. Anal. 36, 348–355 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Nitsche, J.: \(L_{\infty }\)-convergence of finite element approximation. In: Journées “Éléments Finis” (Rennes, 1975), p. 18. Univ. Rennes, Rennes (1975)Google Scholar
  33. 33.
    Nochetto, R.: Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comp. 64(209), 1–22 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Nochetto, R.H., Schmidt, A., Siebert, K.G., Veeser, A.: Pointwise a posteriori error estimates for monotone semi-linear equations. Numer. Math. 104(4), 515–538 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Nochetto, R.H., Siebert, K.G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95(1), 163–195 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, nonlinear and adaptive approximation, pp. 409–542. Springer, Berlin (2009)Google Scholar
  37. 37.
    Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Multiscale and adaptivity: modeling, numerics and applications, Lecture Notes in Math., vol. 2040, pp. 125–225. Springer, Heidelberg (2012)Google Scholar
  38. 38.
    Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38(158), 437–445 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Rösch, A., Siebert, K.G., Steinig, S.: Reliable a posteriori error estimation for state-constrained optimal control. Comput. Optim. Appl. 68(1), 121–162 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Savaré, G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152(1), 176–201 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Schatz, A., Wahlbin, L.: Interior maximum norm estimates for finite element methods. Math. Comp. 31(138), 414–442 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Schatz, A., Wahlbin, L.: Maximum norm estimates in the finite element method on plane polygonal domains. I. Math. Comp. 32(141), 73–109 (1978)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Schatz, A., Wahlbin, L.: Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements. Math. Comp. 33(146), 465–492 (1979)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in \(L_{\infty }\) of the \(\dot{H}^{1}\)-projection into finite element spaces. Math. Comp. 38(157), 1–22 (1982)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Scott, R.: Optimal \(L^{\infty }\) estimates for the finite element method on irregular meshes. Math. Comp. 30(136), 681–697 (1976)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Graduate Studies in Mathematics. American Mathematical Society (2010)Google Scholar
  47. 47.
    Verfürth, R.: A Posteriori Error Sstimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Enrique Otárola
    • 1
  • Richard Rankin
    • 2
    Email author
  • Abner J. Salgado
    • 3
  1. 1.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.School of Mathematical SciencesUniversity of Nottingham Ningbo ChinaNingboChina
  3. 3.Department of MathematicsUniversity of TennesseeKnoxvilleUSA

Personalised recommendations