Advertisement

Computational Optimization and Applications

, Volume 73, Issue 3, pp 791–819 | Cite as

Robust optimal discrete arc sizing for tree-shaped potential networks

  • Martin Robinius
  • Lars Schewe
  • Martin SchmidtEmail author
  • Detlef Stolten
  • Johannes Thürauf
  • Lara Welder
Article

Abstract

We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to be NP-complete even on trees. In order to obtain a tractable problem, we introduce a method for generating a finite scenario set such that optimality of a sizing for this finite set implies the sizing’s optimality for the originally given infinite set of scenarios. We further prove that the size of the finite scenario set is quadratically bounded above in the number of nodes of the underlying tree and that it can be computed in polynomial time. The resulting problem can then be solved as a standard mixed-integer linear optimization problem. Finally, we show the applicability of our theoretical results by computing globally optimal arc sizes for a realistic hydrogen transport network of Eastern Germany.

Keywords

Discrete arc sizing Network design Potential networks Scenario generation Robust optimization Mixed-integer linear optimization 

Mathematics Subject Classification

90-08 90B10 90C11 90C35 90C90 

Notes

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for their support within Projects A05, B07, and B08 in the Sonderforschungsbereich/Transregio 154 “Mathematical Modelling, Simulation and Optimization using the Example of Gas Networks”. This research has been performed as part of the Energie Campus Nürnberg and is supported by funding of the Bavarian State Government and by the Emerging Field Initiative (EFI) of the Friedrich-Alexander-Universität Erlangen-Nürnberg through the project “Sustainable Business Models in Energy Markets”. Furthermore, this work has been supported by the Helmholtz Association under the Joint Initiative “EnergySystem 2050—A Contribution of the Research Field Energy”.

References

  1. 1.
    Afshar, M.H., Mariño, M.A.: A parameter-free self-adapting boundary genetic search for pipe network optimization. Comput. Optim. Appl. 37(1), 83–102 (2007).  https://doi.org/10.1007/s10589-007-9016-1 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall Inc., Upper Saddle River (1993)zbMATHGoogle Scholar
  3. 3.
    Altın, A., Amaldi, E., Belotti, P., Pınar, M.Ç.: Provisioning virtual private networks under traffic uncertainty. Networks 49(1), 100–115 (2007).  https://doi.org/10.1002/net.20145 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andre, J., Bonnans, F., Cornibert, L.: Optimization of capacity expansion planning for gas transportation networks. Eur. J. Oper. Res. 197(3), 1019–1027 (2009).  https://doi.org/10.1016/j.ejor.2007.12.045 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ben-Ameur, W., Kerivin, H.: Routing of uncertain traffic demands. Optim. Eng. 6(3), 283–313 (2005).  https://doi.org/10.1007/s11081-005-1741-7 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton. http://press.princeton.edu/titles/9099.html (2009). Accessed 8 Mar 2019
  7. 7.
    Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: Water Network Design by MINLP. Technical Report (2008). IBM Research Division, RC24495 (W0802-056)Google Scholar
  8. 8.
    Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: On the optimal design of water distribution networks: a practical MINLP approach. Optim. Eng. 13(2), 219–246 (2012).  https://doi.org/10.1007/s11081-011-9141-7 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: An MINLP solution method for a water network problem. In: Azar, Y., Erlebach, T. (eds.) Algorithms - ESA 2006, Lecture Notes in Computer Science, vol. 4168, pp. 696–707. Springer, Berlin (2006).  https://doi.org/10.1007/11841036_62 CrossRefGoogle Scholar
  10. 10.
    Cacchiani, V., Jünger, M., Liers, F., Lodi, A., Schmidt, D.R.: Single-commodity robust network design with finite and Hose demand sets. Math. Program. 157, 297–342 (2016).  https://doi.org/10.1007/s10107-016-0991-9 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Collins, M., Cooper, L., Helgason, R., Kennington, J., LeBlanc, L.: Solving the pipe network analysis problem using optimization techniques. Manag. Sci. 24(7), 747–760 (1978).  https://doi.org/10.1287/mnsc.24.7.747 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Duffield, N.G., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K.K., van der Merive, J.E.: A flexible model for resource management in virtual private networks. SIGCOMM Comput. Commun. Rev. 29(4), 95–108 (1999).  https://doi.org/10.1145/316194.316209 CrossRefGoogle Scholar
  13. 13.
    Erlebach, T., Ruegg, M.: Optimal bandwidth reservation in hose-model VPNs with multi-path routing. In: 23rd Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2004, vol. 4, pp. 2275–2282. IEEE (2004).  https://doi.org/10.1109/INFCOM.2004.1354650
  14. 14.
    Fingerhut, J., Suri, S., Turner, J.S.: Designing least-cost nonblocking broadband networks. J. Algorithms 24(2), 287–309 (1997).  https://doi.org/10.1006/jagm.1997.0866 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fügenschuh, A., Geißler, B., Gollmer, R., Morsi, A., Rövekamp, J., Schmidt, M., Spreckelsen, K., Steinbach, M.C.: Chapter 2: physical and Technical Fundamentals of Gas Networks, pp. 17–43. Society for Industrial and Applied Mathematics, Philadelphia (2015).  https://doi.org/10.1137/1.9781611973693.ch2 Google Scholar
  16. 16.
    Groß, M., Pfetsch, M.E., Schewe, L., Schmidt, M., Skutella, M.: Algorithmic results for potential-based flows: easy and hard cases. Networks 73(3), 306–324 (2018). https://doi.org/10.1002/net.21865
  17. 17.
    Gurobi Optimization, Inc.: Gurobi optimizer reference manual. http://www.gurobi.com (2017). Accessed 8 Mar 2019
  18. 18.
    Hansen, C.T., Madsen, K., Nielsen, H.B.: Optimization of pipe networks. Math. Program. 52(1), 45–58 (1991).  https://doi.org/10.1007/BF01582879 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hart, W.E., Laird, C., Watson, J.P., Woodruff, D.L.: Pyomo-Optimization Modeling in Python, vol. 67. Springer, Boston, MA (2012).  https://doi.org/10.1007/978-1-4614-3226-5 CrossRefzbMATHGoogle Scholar
  20. 20.
    Hart, W.E., Watson, J.P., Woodruff, D.L.: Pyomo: modeling and solving mathematical programs in python. Math. Program. Comput. 3, 219–260 (2011).  https://doi.org/10.1007/s12532-011-0026-8 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Humpola, J., Fügenschuh, A.: Convex reformulations for solving a nonlinear network design problem. Comput. Optim. Appl. 62(3), 717–759 (2015).  https://doi.org/10.1007/s10589-015-9756-2 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Koch, T., Hiller, B., Pfetsch, M., Schewe, L. (eds.): Evaluating Gas Network Capacities. Society for Industrial and Applied Mathematics, Philadelphia (2015).  https://doi.org/10.1137/1.9781611973693 zbMATHGoogle Scholar
  23. 23.
    Mischner, J., Fasold, H., Kadner, K.: gas2energy.net: Systemplanung in der Gasversorgung; gaswirtschaftliche Grundlagen. Edition gwf, Gas, Erdgas. Oldenbourg Industrieverl. (2011)Google Scholar
  24. 24.
    Raghunathan, A.U.: Global optimization of nonlinear network design. SIAM J. Optim. 23(1), 268–295 (2013).  https://doi.org/10.1137/110827387 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Reuss, M., Grube, T., Robinius, M., Preuster, P., Wasserscheid, P., Stolten, D.: Seasonal storage and alternative carriers: a flexible hydrogen supply chain architecture model. Appl. Energy 200, 290–302 (2017).  https://doi.org/10.1016/j.apenergy.2017.05.050 CrossRefGoogle Scholar
  26. 26.
    Ríos-Mercado, R.Z., Wu, S., Scott, L.R., Boyd, E.A.: A reduction technique for natural gas transmission network optimization problems. Ann. Oper. Res. 117(1), 217–234 (2002).  https://doi.org/10.1023/A:1021529709006 CrossRefzbMATHGoogle Scholar
  27. 27.
    Robinius, M.: Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Ph. D. Thesis, RWTH Aachen University (2015)Google Scholar
  28. 28.
    Robinius, M., Otto, A., Syranidis, K., Ryberg, D., Heuser, P., Welder, L., Grube, T., Markewitz, P., Tietze, V., Stolten, D.: Linking the power and transport sectors–part 2: modelling a sector coupling scenario for germany. Energies (2017).  https://doi.org/10.3390/en10070957 Google Scholar
  29. 29.
    Ríos-Mercado, R.Z., Borraz-Sánchez, C.: Optimization problems in natural gas transportation systems: a state-of-the-art review. Appl. Energy 147, 536–555 (2015).  https://doi.org/10.1016/j.apenergy.2015.03.017 CrossRefGoogle Scholar
  30. 30.
    Shiono, N., Suzuki, H.: Optimal pipe-sizing problem of tree-shaped gas distribution networks. Eur. J. Oper. Res. 252, 550–560 (2016).  https://doi.org/10.1016/j.ejor.2016.01.008 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Syranidis, K., Robinius, M., Stolten, D.: Control techniques and the modeling of electrical power flow across transmission networks. Renew. Sustain. Energy Rev. 82, 3452–3467 (2018).  https://doi.org/10.1016/j.rser.2017.10.110 CrossRefGoogle Scholar
  32. 32.
    Szabó, J.: The set of solutions to nomination validation in passive gas transportation networks with a generalized flow formula. Technical Report, pp. 11–44, ZIB, Takustr.7, 14195 Berlin (2012). www.nbn-resolving.de/urn:nbn:de:0297-zib-15151
  33. 33.
    Vuffray, M., Misra, S., Chertkov, M.: Monotonicity of dissipative flow networks renders robust maximum profit problem tractable: general analysis and application to natural gas flows. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 4571–4578 (2015).  https://doi.org/10.1109/CDC.2015.7402933
  34. 34.
    Welder, L., Ryberg, D.S., Kotzur, L., Grube, T., Robinius, M., Stolten, D.: Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany. Energy 158, 1130–1149 (2018). https://doi.org/10.1016/j.energy.2018.05.059
  35. 35.
    Weymouth, T.R.: Problems in natural gas engineering. Trans. Am. Soc. Mech. Eng. 34(1349), 185–231 (1912)Google Scholar
  36. 36.
    Yates, D., Templeman, A., Boffey, T.: The computational complexity of the problem of determining least capital cost designs for water supply networks. Eng. Optimiz. 7(2), 143–155 (1984).  https://doi.org/10.1080/03052158408960635 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Electrochemical Process Engineering (IEK-3)Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Discrete OptimizationFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Energie Campus NürnbergNürnbergGermany
  4. 4.Department of MathematicsTrier UniversityTrierGermany
  5. 5.Chair of Fuel CellsRWTH Aachen University, c/o Institute of Electrochemical Process Engineering (IEK-3), Forschungszentrum JülichJülichGermany

Personalised recommendations