A feasible rounding approach for mixed-integer optimization problems

  • Christoph Neumann
  • Oliver SteinEmail author
  • Nathan Sudermann-Merx


We introduce granularity as a sufficient condition for the consistency of a mixed-integer optimization problem, and show how to exploit it for the computation of feasible points: For optimization problems which are granular, solving certain linear problems and rounding their optimal points always leads to feasible points of the original mixed-integer problem. Thus, the resulting feasible rounding approach is deterministic and even efficient, i.e., it computes feasible points in polynomial time. The optimization problems appearing in the feasible rounding approaches have a structure that is similar to that of the continuous relaxation, and thus our approach has significant advantages over heuristics, as long as the problem is granular. For instance, the computational cost of our approach always corresponds to merely a single step of the feasibility pump. A computational study on optimization problems from the MIPLIB libraries demonstrates that granularity may be expected in various real world applications. Moreover, a comparison with Gurobi indicates that state of the art software does not always exploit granularity. Hence, our algorithms do not only possess a worst-case complexity advantage, but can also improve the CPU time needed to solve problems from practice.


Rounding Granularity Inner parallel set Consistency 

Mathematics Subject Classification

90C11 90C10 



The authors are grateful to Sven Leyffer, Benjamin Müller and two anonymous referees for their precise and substantial remarks, which helped to significantly improve the paper.


  1. 1.
    Achterberg, T., Berthold, T.: Improving the feasibility pump. Discrete Optim. 4, 77–86 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Achterberg, T., Bixby, R., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer programming, Technical Report pp. 16–44, ZIBGoogle Scholar
  3. 3.
    Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34, 361–372 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baum, S.P., Trotter Jr., L.E.: Integer rounding for polymatroid and branching optimization problems. SIAM J. Algebraic Discrete Methods 2, 416–425 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bertacco, L., Fischetti, M., Lodi, A.: A feasibility pump heuristic for general mixed-integer problems. Discrete Optim. 4, 63–76 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Berthold, T.: RENS—the optimal rounding. Math. Program. Comput. 6, 33–54 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Berthold, T., Gleixner, A.M.: Undercover: a primal MINLP heuristic exploring a largest sub-MIP. Math. Program. 144, 315–346 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Boland, N.L., Eberhard, A.C., Engineer, F.G., Fischetti, M., Savelsbergh, M.W.P., Tsoukalas, A.: Boosting the feasibility pump. Math. Program. Comput. 6, 255–279 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bonami, P., Gonçalves, J.P.M.: Heuristics for convex mixed integer nonlinear programs. Comput. Optim. Appl. 51, 729–747 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, New York (2014)zbMATHGoogle Scholar
  12. 12.
    Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104, 91–104 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Math. Program. Comput. 1, 201–222 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hillier, F.S.: Efficient heuristic procedures for integer linear programming with an interior. Oper. Res. 17, 600–637 (1969)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comput. 8, 499–507 (1979)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3, 103–163 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nannicini, G., Belotti, P.: Rounding-based heuristics for nonconvex MINLPs. Math. Program. Comput. 4, 1–31 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Neumann, C., Stein, O., Sudermann-Merx, N.: Granularity in nonlinear mixed-integer optimization. Optimization Online, Preprint ID 2017-12-6367 (2017)Google Scholar
  19. 19.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)zbMATHGoogle Scholar
  20. 20.
    Stein, O.: Error bounds for mixed integer linear optimization problems. Math. Program. 156, 101–123 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Stein, O.: Error bounds for mixed integer nonlinear optimization problems. Optim. Lett. 10, 1153–1168 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Operations ResearchKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Advanced Business AnalyticsBASF Business Services GmbHLudwigshafen am RheinGermany

Personalised recommendations