Advertisement

Computational Optimization and Applications

, Volume 72, Issue 1, pp 87–113 | Cite as

Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs

  • Yangyang XuEmail author
Article
  • 106 Downloads

Abstract

Recent several years have witnessed the surge of asynchronous (async-) parallel computing methods due to the extremely big data involved in many modern applications and also the advancement of multi-core machines and computer clusters. In optimization, most works about async-parallel methods are on unconstrained problems or those with block separable constraints. In this paper, we propose an async-parallel method based on block coordinate update (BCU) for solving convex problems with nonseparable linear constraint. Running on a single node, the method becomes a novel randomized primal–dual BCU for multi-block affinely constrained problems. For these problems, Gauss–Seidel cyclic primal–dual BCU is not guaranteed to converge to an optimal solution if no additional assumptions, such as strong convexity, are made. On the contrary, assuming convexity and existence of a primal–dual solution, we show that the objective value sequence generated by the proposed algorithm converges in probability to the optimal value and also the constraint residual to zero. In addition, we establish an ergodic O(1 / k) convergence result, where k is the number of iterations. Numerical experiments are performed to demonstrate the efficiency of the proposed method and significantly better speed-up performance than its sync-parallel counterpart.

Keywords

Asynchronous parallel Block coordinate update Primal–dual method 

Mathematics Subject Classification

90C06 90C25 68W40 49M27 

References

  1. 1.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, vol. 23. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  2. 2.
    Bianchi, P., Hachem, W., Iutzeler, F.: A coordinate descent primal–dual algorithm and application to distributed asynchronous optimization. IEEE Trans. Autom. Control 61(10), 2947–2957 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cai, X., Han, D., Yuan, X.: On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function. Comput. Optim. Appl. 66(1), 39–73 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chang, T.-H., Hong, M., Liao, W.-C., Wang, X.: Asynchronous distributed admm for large-scale optimization—part I: algorithm and convergence analysis. IEEE Trans. Signal Process. 64(12), 3118–3130 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chang, T.-H., Liao, W.-C., Hong, M., Wang, X.: Asynchronous distributed admm for large-scale optimization—part II: linear convergence analysis and numerical performance. IEEE Trans. Signal Process. 64(12), 3131–3144 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chazan, D., Miranker, W.: Chaotic relaxation. Linear Algebra Appl. 2(2), 199–222 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Programm. 155(1–2), 57–79 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal–dual decomposition methods for monotone inclusions. Math. Program. 168(1–2), 645–672 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  11. 11.
    Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set-Valued Var. Anal. 25(4), 829–858 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Deng, W., Lai, M.-J., Peng, Z., Yin, W.: Parallel multi-block ADMM with \(o(1/k)\) convergence. J. Sci. Comput. 71(2), 712–736 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Feng, J.-K., Zhang, H.-B., Cheng, C.-Z., Pei, H.-M.: Convergence analysis of L-ADMM for multi-block linear-constrained separable convex minimization problem. J. Oper. Res. Soc. China 3(4), 563–579 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gao, X., Xu, Y., Zhang, S.: Randomized primal–dual proximal block coordinate updates. arXiv preprint arXiv:1605.05969 (2016)
  15. 15.
    Gao, X., Zhang, S.: First-order algorithms for convex optimization with nonseparable objective and coupled constraints. J. Oper. Res. Soc. China 5(2), 131–159 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227–238 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    He, B., Hou, L., Yuan, X.: On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming. SIAM J. Optim. 25(4), 2274–2312 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313–340 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    He, B., Tao, M., Yuan, X.: Convergence rate analysis for the alternating direction method of multipliers with a substitution procedure for separable convex programming. Math. Oper. Res. 42(3), 662–691 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hong, M., Chang, T.-H., Wang, X., Razaviyayn, M., Ma, S., Luo, Z.-Q.: A block successive upper bound minimization method of multipliers for linearly constrained convex optimization. arXiv preprint arXiv:1401.7079 (2014)
  21. 21.
    Hong, M., Wang, X., Razaviyayn, M., Luo, Z.-Q.: Iteration complexity analysis of block coordinate descent methods. Math. Program. 163(1–2), 85–114 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    James, G.M., Paulson, C., Rusmevichientong, P.: Penalized and Constrained Regression. Technical report (2013)Google Scholar
  23. 23.
    Li, M., Sun, D., Toh, K.-C.: A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block. Asia-Pac. J. Oper. Res. 32(04), 1550024 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Li, X., Sun, D., Toh, K.-C.: A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155(1–2), 333–373 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lin, T., Ma, S., Zhang, S.: On the global linear convergence of the ADMM with multiblock variables. SIAM J. Optim. 25(3), 1478–1497 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lin, T., Ma, S., Zhang, S.: On the sublinear convergence rate of multi-block ADMM. J. Oper. Res. Soc. China 3(3), 251–274 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Liu, J., Wright, S.J.: Asynchronous stochastic coordinate descent: parallelism and convergence properties. SIAM J. Optim. 25(1), 351–376 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Liu, J., Wright, S.J., Ré, C., Bittorf, V., Sridhar, S.: An asynchronous parallel stochastic coordinate descent algorithm. J. Mach. Learn. Res. 16, 285–322 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)Google Scholar
  30. 30.
    Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341–362 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Peng, Z., Wu, T., Xu, Y., Yan, M., Yin, W.: Coordinate friendly structures, algorithms and applications. Ann. Math. Sci. Appl. 1(1), 57–119 (2016)zbMATHGoogle Scholar
  32. 32.
    Peng, Z., Xu, Y., Yan, M., Yin, W.: ARock: an algorithmic framework for asynchronous parallel coordinate updates. SIAM J. Sci. Comput. 38(5), A2851–A2879 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Peng, Z., Xu, Y., Yan, M., Yin, W.: On the convergence of asynchronous parallel iteration with arbitrary delays. arXiv preprint arXiv:1612.04425 (2016)
  34. 34.
    Razaviyayn, M., Hong, M., Luo, Z.-Q.: A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: a lock-free approach to parallelizing stochastic gradient descent. In: Advances in Neural Information Processing Systems, pp. 693–701 (2011)Google Scholar
  36. 36.
    Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1–2), 1–38 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sun, D., Toh, K.-C., Yang, L.: A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25(2), 882–915 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sun, R., Luo, Z.-Q., Ye, Y.: On the expected convergence of randomly permuted ADMM. arXiv preprint arXiv:1503.06387 (2015)
  39. 39.
    Tseng, P.: On the rate of convergence of a partially asynchronous gradient projection algorithm. SIAM J. Optim. 1(4), 603–619 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117(1–2), 387–423 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Wei, E., Ozdaglar, A.: On the \(o (1/ k)\) convergence of asynchronous distributed alternating direction method of multipliers. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 551–554 (2013)Google Scholar
  43. 43.
    WhiteHouse. Big Data: Seizing Opportunities Preserving Values (2014)Google Scholar
  44. 44.
    Xu, Y.: Hybrid Jacobian and Gauss–Seidel proximal block coordinate update methods for linearly constrained convex programming. SIAM J. Optim. 28(1), 646–670 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. J. Sci. Comput. 72(2), 700–734 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Zeng, Z.-Q., Yu, H.-B., Xu, H.-R., Xie, Y.-Q., Gao, J.: Fast training support vector machines using parallel sequential minimal optimization. In: Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd International Conference on, vol. 1, pp. 997–1001. IEEE (2008)Google Scholar
  48. 48.
    Zhang, R., Kwok, J.: Asynchronous distributed ADMM for consensus optimization. In: International Conference on Machine Learning, pp. 1701–1709 (2014)Google Scholar
  49. 49.
    Zhang, Y., Yang, J., Yin, W.: YALL1: your algorithms for \(l_1\). Online at yall1.blogs.rice.edu (2011)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations