Advertisement

On the optimal solution set in interval linear programming

  • Elif Garajová
  • Milan Hladík
Article
  • 66 Downloads

Abstract

Determining the set of all optimal solutions of a linear program with interval data is one of the most challenging problems discussed in interval optimization. In this paper, we study the topological and geometric properties of the optimal set and examine sufficient conditions for its closedness, boundedness, connectedness and convexity. We also prove that testing boundedness is co-NP-hard for inequality-constrained problems with free variables. Furthermore, we prove that computing the exact interval hull of the optimal set is NP-hard for linear programs with an interval right-hand-side vector. We then propose a new decomposition method for approximating the optimal solution set based on complementary slackness and show that the method provides the exact description of the optimal set for problems with a fixed coefficient matrix. Finally, we conduct computational experiments to compare our method with the existing orthant decomposition method.

Keywords

Interval linear programming Optimal solution set Decomposition methods Topological properties 

References

  1. 1.
    Allahdadi, M., Mishmast Nehi, H.: The optimal solution set of the interval linear programming problems. Optim. Lett. 7(8), 1893–1911 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-Tal, A., Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  3. 3.
    Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, X., Zhang, Y.: Uncertain linear programs: extended affinely adjustable robust counterparts. Oper. Res. 57(6), 1469–1482 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Garajová, E.: The optimal solution set of interval linear programming problems. Master’s thesis, Charles University, Prague (2016). http://is.cuni.cz/webapps/zzp/detail/168259/?lang=en. Accessed 3 Oct 2016
  6. 6.
    Gerlach, W.: Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und der Koeffizientenmatrix. Math. Operationsforsch. Stat., Ser Optim. 12(1), 41–43 (1981)zbMATHGoogle Scholar
  7. 7.
    Hiriart-Urruty, J.B.: Images of connected sets by semicontinuous multifunctions. J. Math. Anal. Appl. 111(2), 407–422 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hladík, M.: Tolerances in portfolio selection via interval linear programming. In: Rehorova, P., Marsikova, K., Hubinka, Z. (eds.) Proceedings of 26th International Conferences on Mathematical Methods in Economics, Liberec, Czech Republic, pp. 185–191. Technical University Liberec (2008)Google Scholar
  9. 9.
    Hladík, M.: Interval linear programming: a survey. In: Z.A. Mann (ed.) Linear Programming—New Frontiers in Theory and Applications, chap. 2, pp. 85–120. Nova Science Publishers, New York (2012)Google Scholar
  10. 10.
    Hladík, M.: An interval linear programming contractor. In: Ramík, J., Stavárek, D. (eds.) Proceedings of 30th International Conference on Mathematical Methods in Economics, Karviná, Czech Republic, pp. 284–289 (Part I.). Silesian University in Opava, School of Business Administration in Karviná (2012)Google Scholar
  11. 11.
    Hladík, M.: Weak and strong solvability of interval linear systems of equations and inequalities. Linear Algebra Appl. 438(11), 4156–4165 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hladík, M.: How to determine basis stability in interval linear programming. Optim. Lett. 8(1), 375–389 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hladík, M.: On approximation of the best case optimal value in interval linear programming. Optim. Lett. 8(7), 1985–1997 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hladík, M., Horáček, J.: Interval Linear Programming Techniques in Constraint Programming and Global Optimization, pp. 47–59. Springer, Cham (2014)Google Scholar
  15. 15.
    Huang, G., Baetz, B.W., Patry, G.G.: A grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Eng. Syst. 9(4), 319–335 (1992)CrossRefGoogle Scholar
  16. 16.
    Jansson, C.: A self-validating method for solving linear programming problems with interval input data. In: Scientific Computation with Automatic Result Verification, pp. 33–45. Springer, Vienna (1988)Google Scholar
  17. 17.
    Jansson, C.: Calculation of exact bounds for the solution set of linear interval systems. Linear Algebra Appl. 251, 321–340 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lai, K.K., Wang, S.Y., Xu, J.P., Zhu, S.S., Fang, Y.: A class of linear interval programming problems and its application to portfolio selection. IEEE Trans. Fuzzy Syst. 10(6), 698–704 (2002)CrossRefGoogle Scholar
  19. 19.
    Li, W.: A note on dependency between interval linear systems. Optim. Lett. 9(4), 795–797 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, S.T., Kao, C.: Matrix games with interval data. Comput. Ind. Eng. 56(4), 1697–1700 (2009)CrossRefGoogle Scholar
  21. 21.
    Liu, Z., Huang, G., Nie, X., He, L.: Dual-interval linear programming model and its application to solid waste management planning. Environ. Eng. Sci. 26(6), 1033–1045 (2009)CrossRefGoogle Scholar
  22. 22.
    Machost, B.: Numerische Behandlung des Simplexverfahrens mit intervallanalytischen Methoden. Tech. Rep. 30, Berichte der GMD, Bonn (1970)Google Scholar
  23. 23.
    McKeown, P.G., Minch, R.A.: Multiplicative interval variation of objective function coefficients in linear programming. Manag. Sci. 28(12), 1462–1470 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Meyer, R.R.: Continuity properties of linear programs. Tech. rep., University of Wisconsin, Madison Department of Computer Sciences (1979)Google Scholar
  25. 25.
    Mostafaee, A., Hladík, M., Černý, M.: Inverse linear programming with interval coefficients. J. Comput. Appl. Math. 292, 591–608 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Munkres, J.: Topology. Pearson Custom Library. Pearson Education, Limited, Pearson (2013)Google Scholar
  27. 27.
    Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numerische Mathematik 6(1), 405–409 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rohn, J.: Enclosing solutions of linear interval equations is NP-hard. Computing 53(3), 365–368 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rohn, J.: Complexity of some linear problems with interval data. Reliab. Comput. 3(3), 315–323 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rohn, J.: Interval linear programming. In: Linear Optimization Problems with Inexact Data, pp. 79–100. Springer, New York (2006)Google Scholar
  31. 31.
    Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Linear Optimization Problems with Inexact Data, pp. 35–77. Springer, New York (2006)Google Scholar
  32. 32.
    Wets, R.J.B.: On the continuity of the value of a linear program and of related polyhedral-valued multifunctions. In: Cottle, R.W. (ed.) Mathematical Programming Essays in Honor of George B. Dantzig Part I, pp. 14–29. Springer, Berlin (1985)CrossRefGoogle Scholar
  33. 33.
    Zhen, J., den Hertog, D., Sim, M.: Adjustable robust optimization via Fourier-Motzkin elimination. Oper. Res. 66(4), 1086–1100 (2018).  https://doi.org/10.1287/opre.2017.1714 CrossRefGoogle Scholar
  34. 34.
    Zhou, F., Huang, G.H., Chen, G.X., Guo, H.C.: Enhanced-interval linear programming. Eur. J. Oper. Res. 199(2), 323–333 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations