Advertisement

Computational Optimization and Applications

, Volume 71, Issue 2, pp 509–523 | Cite as

Finding a best approximation pair of points for two polyhedra

  • Ron Aharoni
  • Yair Censor
  • Zilin JiangEmail author
Article

Abstract

Given two disjoint convex polyhedra, we look for a best approximation pair relative to them, i.e., a pair of points, one in each polyhedron, attaining the minimum distance between the sets. Cheney and Goldstein showed that alternating projections onto the two sets, starting from an arbitrary point, generate a sequence whose two interlaced subsequences converge to a best approximation pair. We propose a process based on projections onto the half-spaces defining the two polyhedra, which are more negotiable than projections on the polyhedra themselves. A central component in the proposed process is the Halpern–Lions–Wittmann–Bauschke algorithm for approaching the projection of a given point onto a convex set.

Keywords

Best approximation pair Convex polyhedra Alternating projections Half-spaces Cheney–Goldstein theorem Halpern–Lions–Wittmann–Bauschke algorithm 

Mathematics Subject Classification

65K05 90C20 90C25 

Notes

Acknowledgements

We thank Yehuda Zur for Matlab programming work at the early stages of our research.

References

  1. 1.
    Aharoni, R., Duchet, P., Wajnryb, B.: Successive projections on hyperplanes. J. Math. Anal. Appl. 103, 134–138 (1984)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202, 150–159 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79, 418–443 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. 2nd edn. Springer, Berlin (2017)Google Scholar
  6. 6.
    Bauschke, H.H., Combettes, P.L., Luke, D.R.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127, 178–192 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bauschke, H.H., Koch, V.R.: Projection methods: Swiss army knives for solving feasibility and best approximation problems with halfspaces. Contemp. Math. 636, 1–40 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Byrne, C.L.: Applied Iterative Methods. A K Peters Ltd, Wellesley, MA (2008)zbMATHGoogle Scholar
  9. 9.
    Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, vol. 2057. Springer, Berlin, Heidelberg (2012)zbMATHGoogle Scholar
  10. 10.
    Censor, Y.: Computational acceleration of projection algorithms for the linear best approximation problem. Linear Algebra Appl. 416, 111–123 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Censor, Y., Cegielski, A.: Projection methods: an annotated bibliography of books and reviews. Optimization 64, 2343–2358 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Censor, Y., Chen, W., Combettes, P.L., Davidi, R., Herman, G.T.: On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 51, 1065–1088 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Censor, Y., Zaknoon, M.: Algorithms and convergence results of projection methods for inconsistent feasibility problems: a review. Pure Appl. Funct. Anal. arXiv:1802.07529
  14. 14.
    Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997)zbMATHGoogle Scholar
  15. 15.
    Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proc. Am. Math. Soc. 10, 448–450 (1959)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Deutsch, F.: Best Approximation in Inner Product Spaces. Springer, New York (2001)CrossRefGoogle Scholar
  17. 17.
    Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78, 837–842 (1983)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Escalante, R., Raydan, M.: Alternating Projection Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011)CrossRefGoogle Scholar
  19. 19.
    Galántai, A.: Projectors and Projection Methods. Kluwer Academic Publishers, Dordrecht (2004)CrossRefGoogle Scholar
  20. 20.
    Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kopecká, E., Reich, S.: A note on alternating projections in Hilbert space. J. Fixed Point Theory Appl. 12, 41–47 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lions, P.L.: Approximation de points fixes de contractions. C. R. Acad. Sci. Paris Sér. A-B 284, A1357–A1359 (1977)MathSciNetGoogle Scholar
  23. 23.
    Luke, D.R.: Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space. SIAM J. Optim. 19, 714–739 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Meshulam, R.: On products of projections. Discrete Math. 154, 307–310 (1996)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. (Basel) 58, 486–491 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsTechnion – Israel Institute of TechnologyTechnion City, HaifaIsrael
  2. 2.Department of MathematicsUniversity of HaifaMt. Carmel, HaifaIsrael

Personalised recommendations