Advertisement

Computational Optimization and Applications

, Volume 69, Issue 2, pp 383–402 | Cite as

A novel approach for ellipsoidal outer-approximation of the intersection region of ellipses in the plane

  • Siamak Yousefi
  • Xiao-Wen Chang
  • Henk Wymeersch
  • Benoit Champagne
  • Godfried Toussaint
Article
  • 88 Downloads

Abstract

In this paper, a novel technique for tight outer-approximation of the intersection region of a finite number of ellipses in 2-dimensional space is proposed. First, the vertices of a tight polygon that contains the convex intersection of the ellipses are found in an efficient manner. To do so, the intersection points of the ellipses that fall on the boundary of the intersection region are determined, and a set of points is generated on the elliptic arcs connecting every two neighbouring intersection points. By finding the tangent lines to the ellipses at the extended set of points, a set of half-planes is obtained, whose intersection forms a polygon. To find the polygon more efficiently, the points are given an order and the intersection of the half-planes corresponding to every two neighbouring points is calculated. If the polygon is convex and bounded, these calculated points together with the initially obtained intersection points will form its vertices. If the polygon is non-convex or unbounded, we can detect this situation and then generate additional discrete points only on the elliptical arc segment causing the issue, and restart the algorithm to obtain a bounded and convex polygon. Finally, the smallest area ellipse that contains the vertices of the polygon is obtained by solving a convex optimization problem. Through numerical experiments, it is illustrated that the proposed technique returns a tighter outer-approximation of the intersection of multiple ellipses, compared to conventional techniques, with only slightly higher computational cost.

Keywords

Computational geometry Convex optimization Ellipsoidal outer approximation Intersection of ellipses Intersection of half-planes Minimum volume enclosing ellipsoid 

References

  1. 1.
    Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society for Industrial and Applied Mathematics (2001)Google Scholar
  2. 2.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, vol. 15. SIAM, New Delhi (1994)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chang, C.T., Gorissen, B., Melchior, S.: Fast oriented bounding box optimization on the rotation group so(3;r). ACM Trans. Graph. 30(5), 122:1–122:16 (2011)CrossRefGoogle Scholar
  5. 5.
    Chernousko, F.L.: Ellipsoidal bounds for sets of attainability and uncertainty in control problems. Optim. Control Appl. Methods 3(2), 187–202 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eberly, D.: Intersection of ellipses, vol. 200. Geometric Tools (2000). https://www.geometrictools.com/Documentation/IntersectionOfEllipses.pdf
  7. 7.
    Edelsbrunner, H., Guibas, L., Pach, J., Pollack, R., Seidel, R., Sharir, M.: Arrangements of curves in the planetopology, combinatorics, and algorithms. Theor. Comput. Sci. 92(2), 319–336 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Freeman, H., Shapira, R.: Determining the minimum-area encasing rectangle for an arbitrary closed curve. Commun. ACM 18(7), 409–413 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gholami, M., Wymeersch, H., Gezici, S., Strom, E.: Distributed bounding of feasible sets in cooperative wireless network positioning. IEEE Commun. Lett. 17(8), 1596–1599 (2013)CrossRefGoogle Scholar
  10. 10.
    Grant, M., Boyd, S., Ye, Y.: CVX: Matlab software for disciplined convex programming, version 2.1 (2014)Google Scholar
  11. 11.
    Henk, M.: Löwner–John ellipsoids. Doc. Math. 95–106 (2012)Google Scholar
  12. 12.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  13. 13.
    Kahan, W.: Circumscribing an ellipsoid about the intersection of two ellipsoids. Can. Math. Bull 11(3), 437–441 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Klee, V., Laskowski, M.C.: Finding the smallest triangles containing a given convex polygon. J. Algorithms 6(3), 359–375 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kurzhanski, A., Valyi, I.: Ellipsoidal Calculus for Estimation and Control. Springer, Berlin (1994)zbMATHGoogle Scholar
  16. 16.
    Lahanas, M., Kemmerer, T., Milickovic, N., Karouzakis, K., Baltas, D., Zamboglou, N.: Optimized bounding boxes for three-dimensional treatment planning in brachytherapy. Med. Phys. 27(10), 2333–2342 (2000)CrossRefGoogle Scholar
  17. 17.
    Maksarov, D., Norton, J.: State bounding with ellipsoidal set description of the uncertainty. Int. J. Control 65(5), 847–866 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Matousek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16(4–5), 498–516 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    O’Rourke, J.: Finding minimal enclosing boxes. Int. J. Comput. Inf. Sci. 14(3), 183–199 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    O’Rourke, J., Chien, C.B., Olson, T., Naddor, D.: A new linear algorithm for intersecting convex polygons. Comput. Gr. Image Process. 19(4), 384–391 (1982)CrossRefzbMATHGoogle Scholar
  21. 21.
    Post, M.J.: A minimum spanning ellipse algorithm. In: 22nd Annual Symposium on Foundations of Computer Science, pp. 115–122 (1981)Google Scholar
  22. 22.
    Preparata, F., Muller, D.: Finding the intersection of n half-spaces in time o(n log n). Theor. Comput. Sci. 8(1), 45–55 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ros, L., Sabater, A., Thomas, F.: An ellipsoidal calculus based on propagation and fusion. IEEE Trans. Syst. Man Cybern. Part B Cybern. 32(4), 430–442 (2002)CrossRefGoogle Scholar
  24. 24.
    Shor, N.Z., Berezovski, O.: New algorithms for constructing optimal circumscribed and inscribed ellipsoids. Optim. Methods Softw. 1(4), 283–299 (1992)CrossRefGoogle Scholar
  25. 25.
    Silverman, B.W., Titterington, D.M.: Minimum covering ellipses. SIAM J. Sci. Stat. Comput. 1(4), 401–409 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Strum, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones (1998)Google Scholar
  27. 27.
    Toussaint, G.: A simple linear algorithm for intersecting convex polygons. Vis. Comput. 1(2), 118–123 (1985)CrossRefzbMATHGoogle Scholar
  28. 28.
    Toussaint, G.: Applications of the rotating calipers to geometric problems in two and three dimensions. Int. J. Digit. Inf. Wirel. Commun. 4(3), 372–386 (2014)Google Scholar
  29. 29.
    Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: New Results and New Trends in Computer Science: Graz, Austria, June 20–21, pp. 359–370. Springer, Berlin, Heidelberg (1991)Google Scholar
  30. 30.
    Yousefi, S., Wymeersch, H., Chang, X., Champagne, B.: Tight 2-dimensional outer-approximation of feasible sets in wireless sensor networks. IEEE Commun. Lett. 20(3), 570–573 (2016)CrossRefGoogle Scholar
  31. 31.
    Zhang, J., Sastary, S.: Distributed position estimation for sensor networks. In: Proceedings of the 15th Triennial World Congress, Barcelona (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada
  2. 2.School of Computer ScienceMcGill UniversityMontrealCanada
  3. 3.Department of Signals and SystemsChalmers University of TechnologyGothenburgSweden
  4. 4.Faculty of ScienceNew York University Abu DhabiAbu DhabiUnited Arab Emirates

Personalised recommendations