Computational Optimization and Applications

, Volume 62, Issue 3, pp 609–611

COAP 2014 Best Paper Prize



  1. 1.
    Bertsimas, D., Brown, D.: Constructing uncertainty sets for robust linear optimization. Oper. Res. 57, 1483–1495 (2009)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bienstock, D., Zuckerberg, M.: Solving lp relaxations of large-scale precedence constrained problems. In: Eisenbrand, F., Shepherd, F. (eds.) Integer Programming and Combinatorial Optimization, vol. 6080. Lecture Notes in Computer Science, pp. 1–14. Springer, Berlin/Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Espinoza, D., Moreno, E.: A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs. Comput. Optim. Appl. 59, 617–638 (2014)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Goycoolea, M., Espinoza, D., Moreno, E., Rivera, O.: Comparing new and traditional methodologies for production scheduling in open pit mining. In: Proceedings of APCOM 2015—Applications of Computers and Operations Research in the Mineral Industry, pp. 352–359. Society for mining, metallurgy & exploration, Inc., Newman (2015)Google Scholar
  5. 5.
    Kleywegt, A., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12, 479–502 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Künzi-Bay, A., Mayer, J.: Computational aspects of minimizing conditional value-at-risk. Comput. Manag. Sci. 3, 3–27 (2006)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Lagos, G., Espinoza, D., Moreno, E., Vielma, J.P.: Restricted risk measures and robust optimization. Eur. J. Oper. Res. 241, 771–782 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142, 215–241 (2006)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Natarajan, K., Pachamanova, D., Sim, M.: Constructing risk measures from uncertainty sets. Oper. Res. 57, 1129–1141 (2009)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)Google Scholar
  11. 11.
    Rockafellar, R., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26, 1443–1471 (2002)CrossRefGoogle Scholar
  12. 12.
    Song, Y., Luedtke, J.: An adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse. SIAM J. Optim. 25, 1344–1367 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Personalised recommendations