Computational Optimization and Applications

, Volume 63, Issue 1, pp 97–120 | Cite as

Lagrangian heuristics for the Quadratic Knapsack Problem

  • Jesus Ossian Cunha
  • Luidi Simonetti
  • Abilio Lucena


This paper investigates two Lagrangian heuristics for the Quadratic Knapsack Problem. They originate from distinct linear reformulations of the problem and follow the traditional approach of generating Lagrangian dual bounds and then using their corresponding solutions as an input to a primal heuristic. One Lagrangian heuristic, in particular, is a Non-Delayed Relax-and-Cut algorithm. Accordingly, it differs from the other heuristic in that it dualizes valid inequalities on-the-fly, as they become necessary. The algorithms are computationally compared here with two additional heuristics, taken from the literature. Comparisons being carried out over problem instances up to twice as large as those previously used. Three out of the four algorithms, including the Lagrangian heuristics, are CPU time intensive and typically return very good quality feasible solutions. A certificate of that being given by the equally good Lagrangian dual bounds we generate. Finally, this paper is intended as a contribution towards the investigation of more elaborated heuristics to the problem, an area that has been barely investigated so far.


Quadratic Knapsack Problem Lagrangian heuristics Relax-and-Cut Lower and upper bounds 


  1. 1.
    Beasley, J.: Lagrangian relaxation. In: Reeves, C. (ed.) Modern Heuristic Techniques for Combinatorial Problems, pp. 243–303. Wiley, New York (1993)Google Scholar
  2. 2.
    Belloni, A., Lucena, A.: Lagrangian heuristic for the linear ordering problem. In: Resende, M.G.C., de Sousa, J.P. (eds.) Metaheuristics: Computer Decision-Making. Kluwer Academic Publishers (2004)Google Scholar
  3. 3.
    Billionnet, A., Calmels, F.: Linear programming for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 92, 310–325 (1996)MATHCrossRefGoogle Scholar
  4. 4.
    Billionnet, A., Soutif, E.: An exact method based on lagrangian decomposition for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 157(3), 565–575 (2004)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Billionnet, A., Faye, A., Soutif, E.: A new upper bound for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 112(3), 664–672 (1999)MATHCrossRefGoogle Scholar
  6. 6.
    Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack problem. INFORMS J. Comput. 11, 125–137 (1999)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Cavalcante, V., Souza, C.C., Lucena, A.: A relax-and-cut algorithm to the set partitioning problem. Comput. Oper. Res. 35, 1963–1981 (2008)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Chaillou, P., Hansen, P., Mahieu, Y.: Best network flow bound for the quadratic knapsack problem. Combinatorial Optimization, Lecture Notes in Mathematics, vol. 1403, pp. 225–235 (1989)Google Scholar
  9. 9.
    Cunha, A.S., Lucena, A.: Lower and upper bounds for the degree-constrained minimum spanning tree problem. Networks 50, 55–66 (2007)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Cunha, A.S., Lucena, A., Maculan, N., Resende, M.G.C.: A relax-and-cut algorithm for the prize-collecting steiner problem in graphs. Discret. Appl. Math. 157, 1198–1217 (2009)MATHCrossRefGoogle Scholar
  11. 11.
    da Cunha, A.S., Bahiense, L., Lucena, A., de Souza, C.C.: A new lagrangian based branch and bound algorithm for the 0–1 knapsack problem. Electron. Notes Discret. Math. 36, 623–630 (2010)CrossRefGoogle Scholar
  12. 12.
    Dantzig, G.: Discrete variables extremum problems. Oper. Res. 5, 266–277 (1957)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Escudero, L., Guignard, M., Malik, K.: A lagrangean relax and cut approach for the sequential ordering with precedence constraints. Ann. Oper. Res. 50, 219–237 (1994)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Ferreira, C., Martin, A., Souza, C., Weismantel, R., Wolsey, L.: Formulations and valid inequalities for node capacitated graph partitioning. Math. Program. 74, 247–266 (1996)MATHGoogle Scholar
  15. 15.
    Fomeni, F., Letchford, A.: A dynamic programming heuristic for the quadratic knapsack problem. INFORMS J. Comput. 26, 173–182 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gallo, G., Hammer, P.L., Simeone, B.: Quadratic knapsack problems. Math. Program. 12, 132–149 (1980)MATHMathSciNetGoogle Scholar
  17. 17.
    Gendreau, M., Potvin, J.: Handbook of Metaheuristics, International Series in Operations Research & Management, vol. 146. Science (2010)Google Scholar
  18. 18.
    Held, M., Karp, R.M.: The travelling salesman problem and minimum spanning trees: part II. Math. Program. 1(1), 6–25 (1971)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6(1), 62–88 (1974)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Helmberg, C., Rendl, F., Weismantel, R.: Quadratic knapsack relaxations using cutting planes and semidefinite programming. In: Proceedings of the Fifth IPCO Conference, Lecture Notes in Computer Science, vol. 1084, pp. 175–189 (1996)Google Scholar
  21. 21.
    Helmberg, C., Rendl, F., Weismantel, R.: A semidefinite programming approach to the quadratic knapsack problem. J. Combin. Optim. 4, 197–215 (1996)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Johnson, E., Mehrotra, A., Nemhauser, G.: Min-cut clustering. Math. Program. 62, 133–151 (1993)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)MATHCrossRefGoogle Scholar
  24. 24.
    Lucena, A.: Steiner problem in graphs: Lagrangean relaxation and cutting-planes. COAL Bulletin, Mathematical Programming Society, vol. 21 (1992)Google Scholar
  25. 25.
    Lucena, A.: Tight bounds for the steiner problem in graphs. In: Proceedings of NET-FLOW93, pp. 147–154 (1993)Google Scholar
  26. 26.
    Lucena, A.: Non delayed relax-and-cut algorithms. Ann. Oper. Res. 140(1), 375–410 (2005)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Lucena, A.: Lagrangian relax-and-cut algorithms. In: Resende, M., Pardalos, P. (eds.) Handbook of Optimization in Telecommunications, pp. 129–145. Springer, New York (2006)CrossRefGoogle Scholar
  28. 28.
    Maniezzo, V., Stützle, T., Voß, S. (eds.): Matheuristics—Hybridizing Metaheuristics and Mathematical Programming, Annals of Information Systems, vol. 10. Springer (2010)Google Scholar
  29. 29.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)MATHGoogle Scholar
  30. 30.
    Michelon, P., Veilleux, L.: Lagrangean methods for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res 92, 326–341 (1996)MATHCrossRefGoogle Scholar
  31. 31.
    Padberg, M.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45, 139–172 (1989)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Palmeira, M.: Um algoritmo relax-and-cut para o problema quadrtico da mochila binria. Master’s thesis, PUC, Rio de Janeiro, RJ, Brasil (1999)Google Scholar
  33. 33.
    Pisinger, D.: The quadratic knapsack problem—a survey. Discret. Appl. Math. 623–648 (2007)Google Scholar
  34. 34.
    Pisinger, D., Toth, P.: Knapsack problems. In: Du, D., Pardalos, P. (eds.) Handbook of Combinatorial Optimization. Kluwer Academic Publishers (1998)Google Scholar
  35. 35.
    Rhys, J.: A selection problem of shared fixed costs and network flows. Manag. Sci. 17, 200–207 (1970)MATHCrossRefGoogle Scholar
  36. 36.
    Rodrigues, C.D., Quadri, Q., Michelon, P., Gueye, S.: 0–1 quadratic knapsack problems: an exact approach based on t-linearization. SIAM J. Optim. 22, 14491468 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Witzgall, C.: Mathematical methods of site selection for electronic message system (ems). Technical Report, NBS Internal Report (1975)Google Scholar
  38. 38.
    Wolsey, L.A.: Integer Programming. Wiley, New York (1998)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jesus Ossian Cunha
    • 1
  • Luidi Simonetti
    • 2
  • Abilio Lucena
    • 1
  1. 1.COPPE, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de ComputaçãoUniversidade Federal FluminenseNiteroiBrazil

Personalised recommendations