Computational Optimization and Applications

, Volume 62, Issue 3, pp 787–814 | Cite as

A heterogeneous cellular processing algorithm for minimizing the power consumption in wireless communications systems

  • J. David Terán-Villanueva
  • Héctor Joaquín Fraire HuacujaEmail author
  • Juan Martín Carpio Valadez
  • Rodolfo Pazos Rangel
  • Héctor José Puga Soberanes
  • José A. Martínez Flores


In this paper, the NP-hard problem of minimizing power consumption in wireless communications systems is approached. In the literature, several metaheuristic approaches have been proposed to solve it. Currently a homogeneous cellular processing algorithm and a GRASP algorithm hybridized with path-relinking are considered the state of the art algorithms. The main contribution of this paper is the analysis of five main characteristics for a heterogeneous cellular processing algorithm, based on scatter search and GRASP. A series of computational experiments with standard instances were carried out to assess the impact of each one of these characteristics. Among the main analyses we found particularly interesting a time reduction by 74.24 %, produced by the stagnation detection characteristic. Also the communication characteristic improves the quality of the solutions by 24.73 %. The computational results show that our heterogeneous cellular processing algorithm is a good alternative for solving the problem. The proposed algorithm finds 34 new best known solutions, which is 27 % of the instances with unknown optimal values. A Friedman hypothesis test was carried out to validate that two state-of-the-art algorithms and the proposed algorithm are statistically equivalent.


Cellular processing algorithms Wireless communications systems Energy-efficient algorithms 



Authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) and the Consejo Tamaulipeco de Ciencia y Tecnología (COTACYT) for support.


  1. 1.
    Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms, vol. 42. Springer, Berlin (2008)zbMATHGoogle Scholar
  2. 2.
    Alba, E., Dorronsoro, B., Alfonso, H.: Cellular memetic algorithms. J. Comput. Sci. Technol. 5(4), 257–263 (2005)Google Scholar
  3. 3.
    Benvenuto, N., Carnevale, G., Tomasin, S.: Energy optimization of cdma transceivers using successive interference cancellation. In: GLOBECOM, pp. 2644–2648 (2004)Google Scholar
  4. 4.
    Benvenuto, N., Carnevale, G., Tomasin, S.: Optimum power control and ordering in sic receivers for uplink cdma systems. IEEE-ICC 2005 (2005)Google Scholar
  5. 5.
    Benvenuto, N., Carnevale, G., Tomasin, S.: Joint power control and receiver optimization of cdma transceivers using successive interference cancellation. IEEE Trans. Commun. 55(3), 563–573 (2007)CrossRefGoogle Scholar
  6. 6.
    Bertacco, L., Brunetta, L., Fischetti, M.: The lopcc. Technical report, University of Padova (2004)Google Scholar
  7. 7.
    Bertacco, L., Brunetta, L., Fischetti, M.: The linear ordering problem with cumulative costs. Eur. J. Oper. Res. 189(3), 1345–1357 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bi, L., Xiao-fang, Z., Qian-sheng, Z., Shi-hen, T.: Differentiate coevolutionary algorithms. J. Converg. Inf. Technol. 6(4), 3247–3259 (2011)Google Scholar
  9. 9.
    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)Google Scholar
  10. 10.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1(1), 53–66 (1997). doi: 10.1109/4235.585892 CrossRefGoogle Scholar
  11. 11.
    Duarte, A., Laguna, M., Martí, R.: Tabu search for the linear ordering problem with cumulative costs. Comput. Optim. Appl. 48, 697–715 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Duarte, A., Martí, R., Álvarez, A., Ángel Bello, F.: Metaheuristics for the linear ordering problem with cumulative costs. Eur. J. Oper. Res. 216(2), 270–277 (2012)CrossRefGoogle Scholar
  13. 13.
    El-Abd, M., Kamel, M.: A taxonomy of cooperative search algorithms. In: Blesa, M., Blum, C., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics. Lecture Notes in Computer Science, pp. 32–41. Springer, Berlin (2005)CrossRefGoogle Scholar
  14. 14.
    Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Global Optim. 6(2), 109–133 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Feo, T., Resende, M., Smith, S.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)zbMATHCrossRefGoogle Scholar
  16. 16.
    Folino, G., Pizzuti, C., Spezzano, G., Spezzano, O.: Combining cellular genetic algorithms and local search for solving satisfiability problems. In: Proceedings of Tenth IEEE International Conference on Tools with Artificial Intelligence, pp. 192–198 (1998)Google Scholar
  17. 17.
    García, S., Herrera, F.: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)zbMATHGoogle Scholar
  18. 18.
    Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8, 156–166 (1977)CrossRefGoogle Scholar
  19. 19.
    Huy, N.Q., Soon, O.Y., Hiot, L.M., Krasnogor, N.: Adaptive cellular memetic algorithms. Evolut. Comput. 17(2), 231–256 (2009). (ISSN:1063–6560)CrossRefGoogle Scholar
  20. 20.
    Laguna, M., Martí, R., Campos, V.: Intensification and diversification with elite tabu search solutions for the linear ordering problem. Comput. & Oper. Res. 26(12), 1217–1230 (1999). doi: 10.1016/s0305-0548(98)00104-x.
  21. 21.
    Landa-Silva, D., Burke, E.K.: Asynchronous cooperative local search for the office-space-allocation problem. INFORMS J. Comput. 19(4), 575–587 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Paris, M., Ribeiro, C.: Parameter variation in grasp procedures. Investig. Oper. 9, 1–20 (2000)Google Scholar
  23. 23.
    Păun, G.: Membrane computing. In: Fundamentals of Computation Theory. pp. 177–220. Springer, Berlin (2003)Google Scholar
  24. 24.
    Rachlin, J., Goodwin, R., Murthy, S., Akkiraju, R., Wu, F., Kumaran, S., Das, R.: A-teams: an agent architecture for optimization and decision-support. In: Müller, J., Rao, A., Singh, M. (eds.) Intelligent Agents V: Agents Theories, Architectures, and Languages. Lecture Notes in Computer Science, vol. 1555, pp. 261–276. Springer, Berlin (1999)CrossRefGoogle Scholar
  25. 25.
    Reinelt, G.: The linear ordering problem: algorithms and applications, Berlin: Heldermann verlag. Math. Soc. Sci. 14(2), 199–200 (1985).
  26. 26.
    Resende, M., Martí, R., Gallego, M., Duarte, A.: Grasp and path relinking for the max-min diversity problem. Comput. Oper. Res. 37(3), 498–508 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Resende, M., Ribeiro, C., Glover, F., Martí, R.: Scatter search and path-relinking: fundamentals, advances, and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, International Series in Operations Research & Management Science, vol. 146, pp. 87–107. Springer, US (2010). chap. 4Google Scholar
  28. 28.
    Resende, M., Riberio, C.: Handbook of Metaheurictics, vol. 146, chap. Greedy Randomized Adaptive Search Procedures: Advances, Hybridizations, and Applications. Springer, Berlin (2010)Google Scholar
  29. 29.
    Righini, G.: A branch-and-bound algorithm for the linear ordering problem with cumulative costs. Eur. J. Oper. Res. 186, 965–971 (2008).
  30. 30.
    Rocha, J.F.: Análisis experimental de la superficie asociada al espacio de soluciones del problema de ordenamiento lineal con costos acumulados. Master’s thesis, Instituto Tecnológico de Ciudad Madero (2011)Google Scholar
  31. 31.
    Sipper, M.: The emergence of cellular computing. IEEE Comput. 32(7), 18–26 (1999)CrossRefGoogle Scholar
  32. 32.
    Terán-Villanueva, J.D., Fraire-Huacuja, H., Carpio-Valadez, J., Pazos-R., R., Puga-Soberanes, H., Martínez-Flores, J.: Cellular processing algorithms. In: Melin, P., Castillo, O. (eds.) Soft Computing Applications in Optimization, Control, and Recognition, Studies in Fuzziness and Soft Computing, vol. 294, pp. 53–74. Springer, Berlin (2013)CrossRefGoogle Scholar
  33. 33.
    Terán-Villanueva, J.D., Fraire-Huacuja, H., Carpio-Valadez, J., Pazos-R, R., Puga-Soberanes, H., Martínez-Flores, J.: Experimental study of a new algorithm-design-framework based on cellular computing. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on Hybrid Intelligent Systems, Studies in Computational Intelligence, vol. 451, pp. 517–532. Springer, Berlin (2013)CrossRefGoogle Scholar
  34. 34.
    Terán-Villanueva, J.D., Fraire-Huacuja, H., Duarte, A., Pazos-Rangel, R., Carpio-Valadez, J., Puga-Soberanes, H.: Improving iterated local search solution for the linear ordering problem with cumulative costs (lopcc). Knowledge-Based and Intelligent Information and Engineering Systems Lecture Notes in Computer Science 6277(2010), 183–192 (2010)CrossRefGoogle Scholar
  35. 35.
    Terán-Villanueva, J.D., Fraire-Huacuja, H.J., Carpio-Valadez, J.M., R., R.P., Puga-Soberanes, H.J., Martínez-Flores, J.A.: Cellular processing scatter search for minimizing power consumption on wireless communications systems. In: HPCS, pp. 126–132 (2012)Google Scholar
  36. 36.
    Terán-Villanueva, J.D., Pazos-Rangel, R., Martínez, J.A., López-Locés, M.C., Zamarrón-Escobar, D., Pineda, A.: Hybrid grasp with composite local search and path-relinking for the linear ordering problem with cumulative costs. Int. J. Comb. Optim. Probl. Inform. 3(1), 21–30 (2012)Google Scholar
  37. 37.
    Toulouse, M., Crainic, T.G., Gendreau, M.: Communication issues in designing cooperative multi-thread parallel searches. Springer, Berlin (1996)CrossRefGoogle Scholar
  38. 38.
    Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. Ph.D. thesis, Fairfax, VA, USA (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. David Terán-Villanueva
    • 1
  • Héctor Joaquín Fraire Huacuja
    • 2
    Email author
  • Juan Martín Carpio Valadez
    • 1
  • Rodolfo Pazos Rangel
    • 2
  • Héctor José Puga Soberanes
    • 1
  • José A. Martínez Flores
    • 2
  1. 1.Instituto Tecnológico de León (ITL)LeónMexico
  2. 2.Instituto Tecnológico de Ciudad Madero (ITCM)Ciudad MaderoMexico

Personalised recommendations