Computational Optimization and Applications

, Volume 62, Issue 1, pp 31–65 | Cite as

Boundary concentrated finite elements for optimal control problems with distributed observation

  • S. Beuchler
  • K. Hofer
  • D. Wachsmuth
  • J.-E. Wurst


We consider the discretization of an optimal boundary control problem with distributed observation by the boundary concentrated finite element method. If the constraint is a \(H^{1+\delta }(\Omega )\) regular elliptic PDE with smooth differential operator and source term, we prove for the two dimensional case that the discretization error in the \(L_2\) norm decreases like \(N^{-\delta }\), where \(N\) is the number of unknowns. Our approach is suitable for solving a wide class of problems, among them piecewise defined data and tracking functionals acting only on a subdomain of \(\Omega \). We present several numerical results.


Optimal control Elliptic partial differential equation Higher-order discretization Boundary-concentrated finite elements A priori error estimates 



This work was funded by the Austrian Science Fund (FWF) Grant P23484-N18.


  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Apel, T., Pfefferer, J., Rösch, A.: Finite element error estimates for Neumann boundary control problems on graded meshes. Comput. Optim. Appl. 52(1), 3–28 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Apel, T., Pfefferer, J., Rösch, A.: Finite element error estimates on the boundary with application to optimal control. Math. Comput. 84(291), 33–70 (2015)CrossRefGoogle Scholar
  4. 4.
    Babuška, I., Guo, B.: Regularity of the solution of elliptic problems with piecewise analytic data. Part I: boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal. 19(1), 172–203 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Babuška, I., Guo, B.: Regularity of the solution of elliptic problems with piecewise analytic data. Part II: the trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions. SIAM J. Math. Anal. 20(4), 763–781 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bank, R.E., Sherman, A.H., Weiser, A.: Some refinement algorithms and data structures for regular local mesh refinement. Sci. Comput. Appl. Math. Comput. Phys. Sci. 1, 3–17 (1983)MathSciNetGoogle Scholar
  7. 7.
    Beuchler, S., Pechstein, C., Wachsmuth, D.: Boundary concentrated finite elements for optimal boundary control problems of elliptic PDEs. Comput. Optim. Appl. 51(2), 883–908 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Casas, E., Mateos, M.: Error estimates for the numerical approximation of Neumann control problems. Comput. Optim. Appl. 39(3), 265–295 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31(2), 193–219 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, Y., Lin, Y.: A posteriori error estimates for \(hp\) finite element solutions of convex optimal control problems. J. Comput. Appl. Math. 235(12), 3435–3454 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, Y., Yi, N., Liu, W.: A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46(5), 2254–2275 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Demkowicz, L.: Computing with hp-Adaptive Finite Elements. CRC Press, Taylor Francis, Boca Raton (2006)CrossRefGoogle Scholar
  13. 13.
    Eibner, T., Melenk, J.M.: A local error analysis of the boundary-concentrated \(hp\)-FEM. IMA J. Numer. Anal. 27(1), 752–778 (2007)MathSciNetGoogle Scholar
  14. 14.
    Gong, W., Liu, W., Yan, N.: A posteriori error estimates of \(hp\)-FEM for optimal control problems. Int. J. Numer. Anal. Model. 8(1), 48–69 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)zbMATHGoogle Scholar
  16. 16.
    Hinze, M., Matthes, U.: A note on variational discretization of elliptic neumann boundary control. Control Cybern. 38, 577–591 (2009)MathSciNetGoogle Scholar
  17. 17.
    Jerison, D.S., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4(2), 203–207 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Karniadakis, G.E.M., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Numerical Mathematics and Scientific Computation Series. Oxford University Press, Oxford (1999)Google Scholar
  19. 19.
    Khoromskij, B.N., Melenk, J.M.: Boundary concentrated finite element methods. SIAM J. Numer. Anal. 41, 1–36 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kufner, A., Sändig, A.-M.: Some Applications of Weighted Sobolev Spaces. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1987)zbMATHGoogle Scholar
  21. 21.
    Mateos, M., Rösch, A.: On saturation effects in the Neumann boundary control of elliptic optimal control problems. Comput. Optim. Appl. 49(2), 359–378 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Melenk, J.M.: hp-Finite Element Methods for Singular Perturbations. Lecture Notes in Mathematics, vol. 1796. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  23. 23.
    Melenk, J.M.: \(hp\)-interpolation of nonsmooth functions and an application to \(hp\)-a posteriori error estimation. SIAM J. Numer. Anal. 43(1), 127–155 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague (1967)zbMATHGoogle Scholar
  25. 25.
    Schwab, C.: p- and hp- Finite Element Methods—Theory and Applications in Solid and Fluid Mechanics. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998)zbMATHGoogle Scholar
  26. 26.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations. Graduate Studies in Mathematics, vol. 112. AMS, Providence (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Wloka, J.: Funktionalanalysis und Anwendungen. Walter de Gruyter, Berlin (1971)zbMATHGoogle Scholar
  28. 28.
    Yosida, K.: Functional Analysis. Springer, Berlin (1965)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. Beuchler
    • 1
  • K. Hofer
    • 1
  • D. Wachsmuth
    • 2
  • J.-E. Wurst
    • 2
  1. 1.Institut für Numerische SimulationUniversität BonnBonnGermany
  2. 2.Institut für MathematikUniversität WürzburgWürzburgGermany

Personalised recommendations