Skip to main content
Log in

Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with the discretization error analysis of semilinear Neumann boundary control problems in polygonal domains with pointwise inequality constraints on the control. The approximations of the control are piecewise constant functions. The state and adjoint state are discretized by piecewise linear finite elements. In a postprocessing step approximations of locally optimal controls of the continuous optimal control problem are constructed by the projection of the respective discrete adjoint state. Although the quality of the approximations is in general affected by corner singularities a convergence order of \(h^2|\ln h|^{3/2}\) is proven for domains with interior angles smaller than \(2\pi /3\) using quasi-uniform meshes. For larger interior angles mesh grading techniques are used to get the same order of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Apel, Th, Pfefferer, J., Rösch, A.: Finite element error estimates for Neumann boundary control problems on graded meshes. Comput. Opt. Appl. 52(1), 3–28 (2012)

    Article  MATH  Google Scholar 

  2. Apel, Th., Pfefferer, J., Rösch, A.: Finite element error estimates on the boundary with application to optimal control. Math. Comp. 84, 33–70 (2015)

  3. Apel, Th., Pfefferer, J., Winkler M.: Local mesh refinement for the discretisation of Neumann boundary control problems on polyhedra (2014, submitted)

  4. Apel, Th, Rösch, A., Winkler, G.: Optimal control in non-convex domains: a priori discretization error estimates. CALCOLO 44(3), 137–158 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Opt. Approx. 23(2), 201–229 (2002)

    Article  MATH  Google Scholar 

  6. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Opt. 37(4), 1176–1194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonnans, J.F., Zidani, H.: Optimal control problems with partially polyhedric constraints. SIAM J. Control Opt. 37(6), 1726–1741 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Opt. 31(4), 993–1006 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Casas, E., Mateos, M.: Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Opt. 40(5), 1431–1454 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Casas, E., Mateos, M.: Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math. 21(1), 67–100 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Casas, E., Mateos, M.: Error estimates for the numerical approximation of Neumann control problems. Comput. Opt. Appl. 39(3), 265–295 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Opt. Appl. 31(2), 193–219 (2005)

    Article  MATH  Google Scholar 

  13. Casas, E., Tröltzsch, F.: Error estimates for linear-quadratic elliptic control problems. In: Barbu, V., et al. (eds.) Analysis and Optimization of Differential Systems, pp. 89–100. Kluwer Academic Publishers, Boston, MA (2003)

    Chapter  Google Scholar 

  14. Casas, E., Tröltzsch, F.: Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Opt. 22(1), 261–279 (2012)

    Article  MATH  Google Scholar 

  15. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Finite Element Methods, Handbook of Numerical Analysis, vol. II, pp. 17–352. Elsevier, North-Holland (1991)

  16. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains-Smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics. Springer, Berlin (1988)

    Google Scholar 

  17. Falk, M.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44(1), 28–47 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. R.A.I.R.O. Analyse numeriqué 13(4), 313–328 (1979)

    MATH  MathSciNet  Google Scholar 

  19. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  20. Heinkenschloss, M., Tröltzsch, F.: Analysis of the Lagrange-SQP-Newton method for the control of a phase field equation. Control Cybern. 28(2), 178–211 (1999)

    Google Scholar 

  21. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Opt. Appl. 30(1), 45–61 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hinze, M., Matthes, U.: A note on variational discretization of elliptic Neumann boundary control. Control Cybern. 38, 577–591 (2009)

    MATH  MathSciNet  Google Scholar 

  23. Jerison, D., Kenig, C.: The Neumann problem on Lipschitz domains. Bull. (New Series) Am. Math. Soc. 4(2), 203–207 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kelley, C.T., Sachs, E.: Approximate quasi-Newton methods. Math. Program. 48(1–3), 41–70 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, Waltham (1980)

    MATH  Google Scholar 

  26. Kunisch, K., Rösch, A.: Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Opt. 13(2), 321–334 (2002)

    Article  MATH  Google Scholar 

  27. Kunisch, K., Sachs, E.: Reduced SQP-methods for parameter identification problems. SIAM J. Numer. Anal. 29(6), 1793–1820 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Malanowski, K.: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Opt. 8(1), 69–95 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mateos, M., Rösch, A.: On saturation effects in the Neumann boundary control of elliptic optimal control problems. Comput. Opt. Appl. 49(2), 359–378 (2011)

    Article  MATH  Google Scholar 

  30. Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains. American Mathematical Society, Providence (2010)

  31. Meyer, C., Rösch, A.: \(L^\infty \)-estimates for approximated optimal control problems. SIAM J. Control Opt. 44(5), 1636–1649 (2005)

    Article  Google Scholar 

  32. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Opt. 43(3), 970–985 (2005)

    Article  Google Scholar 

  33. Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Berlin (2012)

    MATH  Google Scholar 

  34. Rösch, A.: Error estimates for linear-quadratic control problems with control constraints. Opt. Methods Softw. 21(1), 121–134 (2006)

    Article  MATH  Google Scholar 

  35. Rösch, A., Simon, R.: Superconvergence properties for optimal control problems discretized by piecewise linear and discontinuous functions. Numer. Funct. Anal. Opt. 28(3), 425–443 (2007)

    Article  MATH  Google Scholar 

  36. Roßmann, J.: Gewichtete Sobolev–Slobodetskij-Räume und Anwendungen auf elliptische Randwertprobleme in Gebieten mit Kanten. Universität Rostock, Habilitationsschrift (1988)

  37. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pfefferer.

Appendix

Appendix

Lemma 11

Let Assumption 1 be satisfied. Furthermore, let \({\bar{y}_h}=y_h(\bar{u}_h)\) and \(y_h(R_h^{\bar{u}}\bar{u})\) be the solutions of (17) w.r.t \(\bar{u}_h\) and \(R_h^{\bar{u}}\bar{u}\), respectively. Then there exists a mesh size \(h_0>0\) such that for all \(h<h_0\) the estimate

$$\begin{aligned} \Vert {\bar{y}_h}-y_h(R_h^{\bar{u}}\bar{u})\Vert _{L^2(\varOmega )}\le c\Vert {\bar{u}_h}-R_h^{\bar{u}}\bar{u}\Vert _{L^1(\varGamma )} \end{aligned}$$

is valid.

Proof

Analogously to the beginning of the proof of Lemma 8, we introduce a dual auxiliary problem and its discrete counterpart by: let \(\phi \in H^1(\varOmega )\) be the unique solution of

$$\begin{aligned} a(\phi ,v)+\int \limits _{\varOmega } \alpha \phi v \,dx=\int \limits _{\varOmega } \big ({\bar{y}_h}-y_h(R_h^{\bar{u}}\bar{u})\big )v \,dx\quad \quad \forall v\in H^1(\varOmega ), \end{aligned}$$

with

$$\begin{aligned} \alpha (x)=\left\{ \begin{aligned} \frac{d(x,{\bar{y}_h}(x))-d(x,y_h(R_h^{\bar{u}}\bar{u})(x))}{{\bar{y}_h}(x)-y_h(R_h^{\bar{u}}\bar{u})(x)},&\quad \text {if }{\bar{y}_h}(x)-y_h(R_h^{\bar{u}}\bar{u})(x)\not =0,\\ c_\varOmega ,&\quad \text {otherwise,} \end{aligned} \right. \end{aligned}$$

where \(c_\varOmega \) denotes the constant from Assumption 1 (A4). Due to the results of Theorem 7, the approximation properties of \(R_h^{\bar{u}}\), the uniform convergence of \(\bar{u}_h\) to \(\bar{u}\) for all \(h<h_0\) with \(h_0\) from Theorem 8, and the Lipschitz continuity of the nonlinearity \(d\) with respect to the second variable, one can easily check that \(\alpha \) is uniformly bounded in \(L^\infty (\varOmega )\) independent of the mesh parameter \(h\). Furthermore, employing the monotonicity of \(d\) according to Assumptions 1 (A3) and (A4) we can conclude \(\alpha \ge 0\) in \(\varOmega \) and the existence of a subset \(E_\varOmega \) of \(\varOmega \) with \(\alpha >0\) in \(E_\varOmega \). Thus, it is classical to show that the problem is well-posed for all \(h<h_0\). The corresponding discrete counterpart \(\phi _h\in V_h\) is the unique solution of the problem

$$\begin{aligned} a(\phi _h,v_h)\!+\!\int \limits _{\varOmega } \alpha \phi _h v_h \,dx\!=\!\int \limits _{\varOmega } ({\bar{y}_h}-y_h(R_h^{\bar{u}}\bar{u}))v_h \,dx\quad \forall v_h\in V_h. \end{aligned}$$

By means of \({\bar{y}_h}(\bar{u}), y_h(R_h^{\bar{u}}\bar{u})\in V_h\) being solutions of (17) and the definition of \(\alpha \), we derive

$$\begin{aligned} \Vert {\bar{y}_h}(\bar{u})\!-\!y_h(R_h^{\bar{u}}\bar{u})\Vert _{L^2(\varOmega )}^2\!&= \!a(\phi _h, {\bar{y}_h}(\bar{u})-y_h(R_h^{\bar{u}}\bar{u}))\!+\!\int \limits _{\varOmega } \alpha \phi _h({\bar{y}_h}(\bar{u})- y_h(R_h^{\bar{u}}\bar{u})) \,dx\\&= a({\bar{y}_h}(\bar{u})-y_h(R_h^{\bar{u}}\bar{u}),\phi _h) +\int \limits _{\varOmega } (d(x,{\bar{y}_h}(\bar{u}))\\&\quad -\,d(x,y_h(R_h^{\bar{u}}\bar{u}))\phi _h \,dx\\&= \int \limits _{\varGamma } ({\bar{u}_h}-R_h^{\bar{u}}\bar{u})\phi _h \,ds. \end{aligned}$$

We continue by the estimates

$$\begin{aligned} \begin{aligned} \int \limits _{\varGamma } ({\bar{u}_h}-R_h^{\bar{u}}\bar{u})\phi _h \,ds&\le \Vert {\bar{u}_h}-R_h^{\bar{u}}\bar{u}\Vert _{L^1(\varGamma )}\Vert \phi _h\Vert _{L^\infty (\varGamma )}\\&\le \Vert {\bar{u}_h}-R_h^{\bar{u}}\bar{u}\Vert _{L^1(\varGamma )}(\Vert \phi _h-\phi \Vert _{L^\infty (\varOmega )} +\Vert \phi \Vert _{L^\infty (\varOmega )})\\&\le c\Vert {\bar{u}_h}-R_h^{\bar{u}}\bar{u}\Vert _{L^1(\varGamma )}\left( h^{1/2-\varepsilon }+1\right) \Vert {\bar{y}_h}-y_h(R_h^{\bar{u}}\bar{u})\Vert _{L^2(\varOmega )}, \end{aligned} \end{aligned}$$

where a standard \(L^\infty (\varOmega )\)-error estimate (see e.g. (24)) and Lemma 1 together with the embedding \(H^{3/2}(\varOmega )\hookrightarrow L^\infty (\varOmega )\) were used. Thus, the assertion is proven. \(\square \)

Lemma 12

Suppose that the Assumptions (A3) and (A4) are fulfilled. Let \(M>0\) and \(u\in L^2(\varGamma )\) with \(\Vert u\Vert _{L^2(\varGamma )}<M\) be given. Moreover, let \(y_h^{v}\in V_h\) be the unique solution of (21) for a given discrete state \(y_h(u)\) w.r.t. the right hand side \(v\). Then the estimate

$$\begin{aligned} \Vert y_h^{v}\Vert _{L^2(\varOmega )}\le c\Vert v\Vert _{L^1(\varGamma )} \end{aligned}$$

holds true with a constant \(c\) which may depend on \(M\) but is independent of \(u\).

Proof

The proof can be done analogously to the proof of Lemma 11 introducing an appropriate dual problem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krumbiegel, K., Pfefferer, J. Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations. Comput Optim Appl 61, 373–408 (2015). https://doi.org/10.1007/s10589-014-9718-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9718-0

Keywords

Mathematics Subject Classification

Navigation