Computational Optimization and Applications

, Volume 59, Issue 3, pp 639–665 | Cite as

Strong-branching inequalities for convex mixed integer nonlinear programs

  • Mustafa Kılınç
  • Jeff LinderothEmail author
  • James Luedtke
  • Andrew Miller


Strong branching is an effective branching technique that can significantly reduce the size of the branch-and-bound tree for solving mixed integer nonlinear programming (MINLP) problems. The focus of this paper is to demonstrate how to effectively use “discarded” information from strong branching to strengthen relaxations of MINLP problems. Valid inequalities such as branching-based linearizations, various forms of disjunctive inequalities, and mixing-type inequalities are all discussed. The inequalities span a spectrum from those that require almost no extra effort to compute to those that require the solution of an additional linear program. In the end, we perform an extensive computational study to measure the impact of each of our proposed techniques. Computational results reveal that existing algorithms can be significantly improved by leveraging the information generated as a byproduct of strong branching in the form of valid inequalities.


Mixed-integer nonlinear programming Strong-branching  Disjunctive inequalities Mixing inequalities 



The authors would like to thank two anonymous referees for their useful comments and patience. This research was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy under Grant DE-FG02-08ER25861 and by the U.S. National Science Foundation under Grant CCF-0830153.

Supplementary material

10589_2014_9690_MOESM1_ESM.pdf (103 kb)
ESM 1 (PDF 103 kb)


  1. 1.
    Abhishek, K., Leyffer, S., Linderoth, J.T.: FilMINT: an outer-approximation-based solver for nonlinear mixed integer programs. INFORMS J. Comput. 22, 555–567 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Achterberg, T.: Constraint Integer Programming. Ph.D. Thesis, Technischen Universtät Berlin (2007)Google Scholar
  3. 3.
    Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Applegate, D., Bixby, R., Cook, W., Chvátal, V.: The Traveling Salesman Problem, A Computational Study. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  5. 5.
    Atamtürk, A., Nemhauser, G., Savelsbergh, M.W.P.: Conflict graphs in solving integer programming problems. Eur. J. Oper. Res. 121, 40–55 (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Balas, E.: A modified lift-and-project procedure. Math. Program. 79, 19–31 (1997)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discr. Appl. Math. 89(1–3), 3–44 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Manag. Sci. 42, 1229–1246 (1996)CrossRefzbMATHGoogle Scholar
  10. 10.
    Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4, 224–234 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Bonami, P., Kılınç, M., Linderoth, J.: Algorithms and software for solving convex mixed integer nonlinear programs. IMA Vol. Math. Appl. 54, 1–40 (2012)CrossRefGoogle Scholar
  13. 13.
    Bonami, P., Lee, J., Leyffer, S., Wächter, A.: More branch-and-bound experiments in convex nonlinear integer programming. Preprint ANL/MCS-P1949-0911, Argonne National Laboratory, Mathematics and Computer Science Division, September (2011)Google Scholar
  14. 14.
    Boorstyn, R.R., Frank, H.: Large-scale network topological optimization. IEEE Trans. Commun. 25, 29–47 (1997)Google Scholar
  15. 15.
    Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib - a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout deisgn problems with unequal areas: a comparison of MILP and MINLP optimization methods. Comput. Chem. Eng. 30, 54–69 (2005)CrossRefGoogle Scholar
  17. 17.
    Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Duran, M.A., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Elhedhli, S.: Service system design with immobile servers, stochastic demand, and congestion. Manuf. Serv. Oper. Manag. 8(1), 92–97 (2006)Google Scholar
  20. 20.
    Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Programm. 128, 205–230 (2011)Google Scholar
  21. 21.
    Fletcher, R., Leyffer, S.: User manual for filterSQP. University of Dundee Numerical Analysis Report NA-181 (1998)Google Scholar
  22. 22.
    Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3, 227–252 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Günlük, O., Lee, J., Weismantel, R.: MINLP strengthening for separaable convex quadratic transportation-cost ufl. Technical Report RC24213 (W0703–042), IBM Research Division, March (2007)Google Scholar
  24. 24.
    Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3), 429–457 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Harjunkoski, I., Pörn, R., Westerlund, T.: MINLP: Trim-loss problem. In: Floudas, Christodoulos A., Pardalos, Panos M. (eds.) Encyclopedia of Optimization, pp. 2190–2198. Springer, New York (2009)CrossRefGoogle Scholar
  26. 26.
    Kılınç, M.: Disjunctive Cutting Planes and Algorithms for Convex Mixed Integer Nonlinear Programming. Ph.D. Thesis, University of Wisconsin-Madison (2011)Google Scholar
  27. 27.
    Leyffer, S.: MacMINLP: Test Problems for Mixed Integer Nonlinear Programming, (2003).
  28. 28.
    Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies in mixed integer programming. INFORMS J. Comput. 11, 173–187 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.C.: MINTO, a Mixed INTeger Optimizer. Oper. Res. Lett. 15, 47–58 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Pochet, Y., Wolsey, L.: Lot sizing with constant batches: formulation and valid inequalities. Math. Oper. Res. 18, 767–785 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Quesada, I., Grossmann, I.E.: An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16, 937–947 (1992)CrossRefGoogle Scholar
  32. 32.
    Ravemark, D.E., Rippin, D.W.T.: Optimal design of a multi-product batch plant. Comput. Chem. Eng. 22(1–2), 177–183 (1998)CrossRefGoogle Scholar
  33. 33.
    Sawaya, N.: Reformulations, relaxations and cutting planes for generalized disjunctive programming. Ph.D. Thesis, Chemical Engineering Department, Carnegie Mellon University (2006)Google Scholar
  34. 34.
    Sawaya, N., Laird, C.D., Biegler, L.T., Bonami, P., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Lee, J., Lodi, A., Margot, F., Wächter, A.: CMU-IBM open source MINLP project test set, (2006).
  35. 35.
    Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. Ser. B 124, 383–411 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Stubbs, R., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86, 515–532 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Türkay, M., Grossmann, I.E.: Logic-based MINLP algorithms for the optimal synthesis of process networks. Comput. Chem. Eng. 20(8), 959–978 (1996)CrossRefGoogle Scholar
  38. 38.
    Vecchietti, A., Grossmann, I.E.: LOGMIP: a disjunctive 0–1 non-linear optimizer for process system models. Comput. Chem. Eng. 23(4–5), 555–565 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mustafa Kılınç
    • 1
  • Jeff Linderoth
    • 2
    Email author
  • James Luedtke
    • 2
  • Andrew Miller
    • 3
  1. 1.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.United Parcel ServiceAtlantaUSA

Personalised recommendations