Computational Optimization and Applications

, Volume 60, Issue 3, pp 545–557 | Cite as

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization

  • Nicholas I. M. Gould
  • Dominique Orban
  • Philippe L. Toint
Article

Abstract

We describe the most recent evolution of our constrained and unconstrained testing environment and its accompanying SIF decoder. Code-named SIFDecode and CUTEst, these updated versions feature dynamic memory allocation, a modern thread-safe Fortran modular design, a new Matlab interface and a revised installation procedure integrated with GALAHAD.

Keywords

CUTE CUTEr CUTEst Optimization Modeling Benchmarking 

References

  1. 1.
    Birgin, E.G., Martinez, J.M., Raydan, M.: Algorithm 813: SPG–software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Birgin, E.G., Castillo, R., Martinez, J.M.: Numerical comparison of augmented Lagrangian algorithms for nonconvex problems. Comput. Optim. Appl. 31(1), 31–56 (2005)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L.: \({\sf CUTE}\): constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21(1), 123–160 (1995)Google Scholar
  4. 4.
    Conn, A.R., Gould, N.I.M., Toint, Ph.L.: An introduction to the structure of large scale nonlinear optimization problems and the \({\sf LANCELOT}\) project. In: Glowinski, R., Lichnewsky, A. (eds.) Computing Methods in Applied Sciences and Engineering, pp. 42–51. SIAM, Philadelphia (1990)Google Scholar
  5. 5.
    Conn, A.R., Gould, N.I.M., Toint, Ph.L.: \({\sf LANCELOT}\): A Fortran Package for Large-Scale Nonlinear Optimization (Release A). Springer Series in Computational Mathematics. Springer, Heidelberg, Berlin, New York (1992)Google Scholar
  6. 6.
    Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 1–15 (2011)CrossRefGoogle Scholar
  7. 7.
    Dolan, E.D., Gurson, A.P., Shepherd, P.L., Siefert, C.M., Torczon, V.J., Yates, A.: C++ direct searches. http://www.cs.wm.edu/va/software/DirectSearch/direct_code/ (2001)
  8. 8.
    Fletcher, R.: A sequential linear constraint programming algorithm for NLP. SIAM J. Optim. 22(3), 772–794 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Gay, D.M.: Electronic mail distribution of linear programming test problems. Mathematical Programming Society COAL Newsletter, December (1985). http://www.netlib.org/lp/data/
  10. 10.
    Gill, P.E., Wong, E.: Methods for convex and general quadratic programming. Technical Report NA 10–1, Department of Mathematics, University of California, San Diego, 2013. To appear Mathematical Programming Computation (2014)Google Scholar
  11. 11.
    Gould, N.I.M., Orban, D., Toint, Ph.L.: \({\sf CUTEr}\) (and \({\sf SifDec}\)), a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)Google Scholar
  12. 12.
    Gould, N.I.M., Orban, D., Toint, Ph.L.: \({\sf GALAHAD}\)—a library of thread-safe fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)Google Scholar
  13. 13.
    IBM Optimization Solutions and Library: QP Solutions User Guide. IBM Corportation (1998)Google Scholar
  14. 14.
    International Business Machine Corporation: Mathematical programming system/360 version 2, linear and separable programming-user’s manual. Technical Report H20–0476-2, IBM Corporation, 1969. MPS StandardGoogle Scholar
  15. 15.
    Kocvara, M., Stingl, M.: PENNON: a code for convex nonlinear and semidefinite programming. Optim. Methods Softw. 18(3), 317–333 (2003)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Maros, I., Meszaros, C.: A repository of convex quadratic programming problems. Optim. Methods Softw. 11–12, 671–681 (1999)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ponceleón, D.B.: Barrier methods for large-scale quadratic programming. Ph.D. Thesis, Department of Computer Science, Stanford University, Stanford, CA, USA (1990)Google Scholar
  18. 18.
    Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Technical Report DAMTP NA2009/06, Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge, UK (2009)Google Scholar
  19. 19.
    Powell, M.J.D.: The LINUOA software for linearly unconstrained optimization without derivatives. http://www.netlib.org/na-digest-html/13/v13n42.html (2013)
  20. 20.
    Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization. Nonconvex Optimization and Its Applications, vol. 83, pp. 255–297. Springer, Heidelberg, Berlin, New York (2006)CrossRefGoogle Scholar
  21. 21.
    QPLIB2014: a Quadratic Programming Library. http://www.lamsade.dauphine.fr/QPlib2014/doku.php (2014)
  22. 22.
    Schittkowski, K.: NLPQLP: a Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search. University of Bayreuth, Department of Computer Science, Technical report (2010)Google Scholar
  23. 23.
    Schittkowski, K.: QL: a Fortran code for convex quadratic programming–User’s guide, Version 2.11. Technical report, University of Bayreuth, Department of Computer Science (2005)Google Scholar

Copyright information

© Crown Copyright 2014

Authors and Affiliations

  • Nicholas I. M. Gould
    • 1
  • Dominique Orban
    • 2
  • Philippe L. Toint
    • 3
  1. 1.Scientific Computing DepartmentRutherford Appleton LaboratoryChiltonEngland, UK
  2. 2.Department of Mathematics and Industrial EngineeringÉcole Polytechnique, and GERADMontréalCanada
  3. 3.Department of MathematicsUniversity of NamurNamurBelgium

Personalised recommendations