Computational Optimization and Applications

, Volume 59, Issue 1–2, pp 185–200 | Cite as

Exact computational approaches to a stochastic uncapacitated single allocation p-hub center problem

Article

Abstract

The stochastic uncapacitated single allocation p-hub center problem is an extension of the deterministic version which aims to minimize the longest origin-destination path in a hub and spoke network. Considering the stochastic nature of travel times on links is important when designing a network to guarantee the quality of service measured by a maximum delivery time for a proportion of all deliveries. We propose an efficient reformulation for a stochastic p-hub center problem and develop exact solution approaches based on variable reduction and a separation algorithm. We report numerical results to show effectiveness of our new reformulations and approaches by finding global solutions of small-medium sized problems. The combination of model reformulation and a separation algorithm is particularly noteworthy in terms of computational speed.

Keywords

Hub location Center problem Stochastic programming Variable reduction Separation algorithm 

References

  1. 1.
    Alumur, S., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190(1), 1–21 (2008) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Baron, O., Berman, O., Krass, D.: Facility location with stochastic demand and constraints on waiting time. Manuf. Serv. Oper. Manag. 10, 484–505 (2008) Google Scholar
  3. 3.
    Campbell, J.F.: Location and allocation for distribution systems with transshipments and transportation economies of scale. Ann. Oper. Res. 40, 77–99 (1992) CrossRefMATHGoogle Scholar
  4. 4.
    Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72, 387–405 (1994) CrossRefMATHGoogle Scholar
  5. 5.
    Campbell, J.F., Ernst, A., Krishnamoorthy, M.: Hub location problems. In: Hamacher, H., Drezner, Z. (eds.) Location Theory: Applications and Theory, pp. 373–406. Springer, Berlin (2001) Google Scholar
  6. 6.
    Contreras, I., Cordeau, J.-F., Laporte, G.: Stochastic uncapacitated hub location (2011). HEC Montreal and Interuniversity Res. Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), Montreal, Canada Google Scholar
  7. 7.
    Contreras, I., Diaz, J.A., Fernandez, E.: Branch-and-price for large-scale capacitated hub location problems with single assignment. INFORMS J. Comput. 23, 41–55 (2011) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Uncapacitated single and multiple allocation p-hub center problems. Comput. Oper. Res. 36, 2230–2241 (2009) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Ernst, A.T., Krishnamoorthy, M.: Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Sci. 4, 139–154 (1996) CrossRefMATHGoogle Scholar
  10. 10.
    Ernst, A.T., Krishnamoorthy, M.: Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem. Eur. J. Oper. Res. 104(1), 100–112 (1998) CrossRefMATHGoogle Scholar
  11. 11.
    Fotheringham, A.S.: A new set of spatial interaction models. The theory of competing destinations. Environ. Plan. A 15–36 (1983). http://www.envplan.com/abstract.cgi?id=a150015
  12. 12.
    Garnett, O., Mandelbaum, A., Reiman, M.: Designing a call center with impatient customers. Manuf. Serv. Oper. Manag. 4(3), 208–227 (2002) Google Scholar
  13. 13.
    Gurvich, I., Armony, M., Mandelbaum, A.: Service-level differentiation in call centers with fully flexible servers. Manag. Sci. 54(2), 279–294 (2008) CrossRefMATHGoogle Scholar
  14. 14.
    Juette, S., Gavriliouk, O., Hamacher, H.: Polyhedral analysis of uncapacitated single allocation p-hub center problems. Technical Report 109, FB Mathematik, TU Kaiserslautern (2007) Google Scholar
  15. 15.
    Kara, B.Y., Tansel, B.: On the single assignment p-hub center problem. Eur. J. Oper. Res. 125(3), 648–655 (2000) CrossRefMATHGoogle Scholar
  16. 16.
    Marianov, V., Serra, D.: Location models for airline hubs behaving as m/d/c queues. Comput. Oper. Res. 30, 983–1003 (2003) CrossRefMATHGoogle Scholar
  17. 17.
    Meyer, T., Ernst, A.T., Krishnamoorthy, M.: A 2-phase algorithm for solving the single allocation p-hub center problem. Comput. Oper. Res. 36, 3143–3151 (2009) CrossRefMATHGoogle Scholar
  18. 18.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988) CrossRefMATHGoogle Scholar
  19. 19.
    O’Kelly, M.E.: A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper. Res. 32, 393–404 (1987) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Elhedhli, H.W.S.: A Lagrangean heuristic for hub-and-spoke system design with capacity selection and congestion. INFORMS J. Comput. 22, 282–296 (2010) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Savage, S.: Decision Making with Insight. Duxbury, N. Scituate (2003) Google Scholar
  22. 22.
    Sim, T., Lowe, T., Thomas, B.: The stochastic p-hub center problem with service-level constraints. Comput. Oper. Res. 36, 3166–3177 (2009) CrossRefMATHGoogle Scholar
  23. 23.
    Skorin-Kapov, D., Skorin-Kapov, J., O’Kelly, M.E.: Tight linear programming relaxations of uncapacitated p-hub median problems. Eur. J. Oper. Res. 94, 582–593 (1996) CrossRefMATHGoogle Scholar
  24. 24.
    Wang, J.: The β-reliable median on a network with discrete probabilistic demand weights. Oper. Res. 55, 966–975 (2007) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Yang, T.-H.: Stochastic air freight hub location and flight routes planning. Appl. Math. Model. 33, 4424–4430 (2009) CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.EF Education FirstCambridgeUSA
  2. 2.Judge Business SchoolUniversity of CambridgeCambridgeUK

Personalised recommendations