Computational Optimization and Applications

, Volume 56, Issue 1, pp 231–251 | Cite as

A simplex-based numerical framework for simple and efficient robust design optimization

  • Pietro Marco Congedo
  • Jeroen Witteveen
  • Gianluca Iaccarino
Article

Abstract

The Simplex Stochastic Collocation (SSC) method is an efficient algorithm for uncertainty quantification (UQ) in computational problems with random inputs. In this work, we show how its formulation based on simplex tessellation, high degree polynomial interpolation and adaptive refinements can be employed in problems involving optimization under uncertainty. The optimization approach used is the Nelder-Mead algorithm (NM), also known as Downhill Simplex Method. The resulting SSC/NM method, called Simplex2, is based on (i) a coupled stopping criterion and (ii) the use of an high-degree polynomial interpolation in the optimization space for accelerating some NM operators. Numerical results show that this method is very efficient for mono-objective optimization and minimizes the global number of deterministic evaluations to determine a robust design. This method is applied to some analytical test cases and a realistic problem of robust optimization of a multi-component airfoil.

Keywords

Nelder-Mead method Simplex stochastic collocation method Robust optimization Uncertainty quantification 

References

  1. 1.
    Audet, C., Dennis, J.: Analysis of generalized pattern searches. SIAM J. Optim. 13(1), 889–903 (2003) MathSciNetMATHGoogle Scholar
  2. 2.
    Beyer, H.-G., Sendhoff, B.: Robust optimization—a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196, 3190–3218 (2007) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Burmen, A., Puhan, J., Tuma, T.: Grid restrained Nelder-Mead algorithm. Comput. Optim. Appl. 34(3), 359–375 (2005) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Congedo, P.M., Corre, C., Martinez, J.M.: Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties. Comput. Methods Appl. Mech. Eng. 200(1–4), 216–232 (2011) CrossRefGoogle Scholar
  5. 5.
    Congedo, P.M., Witteveen, J.A.S., Iaccarino, G.: Simplex-simplex approach for robust design optimization. In: Proceedings of EUROGEN2011, Eccomas Thematic Conference (2011) Google Scholar
  6. 6.
    Diwekar, U.: A novel sampling approach to combinatorial optimization under uncertainty. Comput. Optim. Appl. 24(2–3), 335–371 (2003) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Doltsinis, I., Kang, Z.: Robust design of structures using optimization methods. Comput. Methods Appl. Mech. Eng. 193, 2221–2237 (2004) MATHCrossRefGoogle Scholar
  8. 8.
    Eldred, M.S., Webster, C.G., Constantine, P.G.: Design under uncertainty employing stochastic expansion methods. AIAA Paper 2008-6001 (2008) Google Scholar
  9. 9.
    Eldred, M.S., Swiler, L.P., Tang, G.: Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation. Reliab. Eng. Syst. Saf. 96, 1092–1113 (2011) CrossRefGoogle Scholar
  10. 10.
    Foo, J., Karniadakis, G.E.: Multi-element probabilistic collocation method in high dimensions. J. Comput. Phys. 229, 1536–1557 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gao, F., Han, L.: Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl., 1–19 (2010). doi:10.1007/s10589-010-9329-3
  12. 12.
    Han, L., Neumann, M.: Effect of dimensionality on the Nelder-Mead simplex method. Optim. Methods Softw. 21, 1–16 (2006) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Jensen, H.A., Catalan, M.A.: On the effects of non-linear elements in the reliability-based optimal design of stochastic dynamical systems. Int. J. Non-Linear Mech. 42(5), 802–816 (2007) MATHCrossRefGoogle Scholar
  14. 14.
    Lagarias, J.-C., Reeds, J.-A., Wright, M.-H., Wright, P.-E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Ma, X., Zabaras, N.: An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. J. Comput. Phys. 229(10), 3884–3915 (2010) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Mitra, G.: Introduction: optimization and risk modelling. Comput. Optim. Appl. 32(1–2), 5–8 (2005) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Namura, N., Shimoyama, K., Jeong, S., Obayashi, S.: Kriging/RBF-hybrid response surface method for highly nonlinear functions. In: IEEE Congress on Evolutionary Computation, pp. 2534–2541 (2011) Google Scholar
  18. 18.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965) MATHCrossRefGoogle Scholar
  19. 19.
    Park, G.J., Lee, T.H., Lee, K., Hwang, K.H.: Robust design: an overview. AIAA J. 44, 181–191 (2006) CrossRefGoogle Scholar
  20. 20.
    Poles, S.: The simplex method. Esteco technical report 2003-005 (2003) Google Scholar
  21. 21.
    Price, C.J., Coope, I.D., Byatt, D.: A convergent variant of the Nelder-Mead algorithm. J. Optim. Theory Appl. 113(1), 5–19 (2002) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Price, C., Coope, I.: Frames and grids in unconstrained and linearly constrained optimization: a nonsmooth approach. SIAM J. Optim. 14, 415–438 (2003) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Sankaran, S., Audet, C., Marsden, A.L.: A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation. J. Comput. Phys. 229, 4664–4682 (2010) MATHCrossRefGoogle Scholar
  24. 24.
    Schueller, G.I., Jensen, H.A.: Computational methods in optimization considering uncertainties–an overview. Comput. Methods Appl. Mech. Eng. 198, 242–272 (2008) MathSciNetGoogle Scholar
  25. 25.
    Singer, S., Singer, S.: Complexity analysis of Nelder-Mead search iterations. In: Proceedings of the First Conference on Applied Mathematics and Computation, vol. 1, pp. 185–196 (2001) Google Scholar
  26. 26.
    Singer, S., Singer, S.: Efficient implementation of the Nelder-Mead search algorithm. Appl. Numer. Anal. Comput. Math. 1(3), 524–534 (2004) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Taguchi, G.: Introduction to Quality Engineering (1989). American Supplier Institute Google Scholar
  28. 28.
    Torczon, V.: Multi-directional search: a direct search algorithm for parallel machines. Ph.D. thesis, Rice University, Texas (1989) Google Scholar
  29. 29.
    Xu, D., Albin, S.: Robust optimization of experimentally derived objective functions. IIE Trans. 35(9), 793–802 (2003) CrossRefGoogle Scholar
  30. 30.
    Witteveen, J.A.S., Iaccarino, G.: Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. SIAM J. Sci. Comput. 34, A814–A838 (2012) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Witteveen, J.A.S., Iaccarino, G.: Refinement criteria for simplex stochastic collocation with local extremum diminishing robustness. SIAM J. Sci. Comput. 34, A1522–A1543 (2012) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optim. 1, 330–343 (2010) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pietro Marco Congedo
    • 1
  • Jeroen Witteveen
    • 2
  • Gianluca Iaccarino
    • 2
  1. 1.INRIA Bordeaux–Sud-OuestTalence cedexFrance
  2. 2.Mechanical Engineering Department, Center for Turbulence ResearchStanford UniversityStanfordUSA

Personalised recommendations