# Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem

- 436 Downloads
- 10 Citations

## Abstract

This paper presents several methodological and algorithmic improvements over a state-of-the-art dynamic programming algorithm for solving the bi-objective {0,1} knapsack problem. The variants proposed make use of new definitions of lower and upper bounds, which allow a large number of states to be discarded. The computation of these bounds are based on the application of dichotomic search, definition of new bound sets, and bi-objective simplex algorithms to solve the relaxed problem. Although these new techniques are not of a common application for dynamic programming, we show that the best variants tested in this work can lead to an average improvement of 10 to 30 % in CPU-time and significant less memory usage than the original approach in a wide benchmark set of instances, even for the most difficult ones in the literature.

## Keywords

Bi-objective 0-1 knapsack problems Multi-objective combinatorial optimization Bounds sets Dichotomic search Bi-objective simplex algorithm## Notes

### Acknowledgements

The authors acknowledge the anonymous referee that suggested the second version of variant B-DP3. J.R. Figueira, L. Paquete and D. Vanderpooten acknowledge the financial support from the Luso-French bilateral cooperation agreement between LAMSADE and CEG-IST (FCT/CNRS 2009). J.R. Figueira and M. Simões acknowledge a grant from CEG-IST, Instituto Superior Técnico (PTDC/GES/73853/2006). D. Vanderpooten acknowledges the support by the project ANR-09-BLAN-0361 “GUaranteed Efficiency for PAReto optimal solutions Determination (GUEPARD)”.

## References

- 1.Aneja, Y., Nair, K.: Bicriteria transportation problem. Manag. Sci.
**25**(1), 73–78 (1979) MathSciNetMATHCrossRefGoogle Scholar - 2.Bazgan, C., Hugot, H., Vanderpooten, D.: Implementing an efficient fptas for the 0-1 multi-objective knapsack problem. Eur. J. Oper. Res.
**198**(1), 47–56 (2009) MathSciNetMATHCrossRefGoogle Scholar - 3.Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0-1 multi-objective knapsack problem. Comput. Oper. Res.
**36**(1), 260–279 (2009) MathSciNetMATHCrossRefGoogle Scholar - 4.Captivo, M., Clímaco, J., Figueira, J., Martins, E., dos Santos, J.: Solving bicriteria 0-1 knapsack problems using a labeling algorithm. Comput. Oper. Res.
**30**(12), 1865–1886 (2003) MathSciNetMATHCrossRefGoogle Scholar - 5.Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001) MATHGoogle Scholar
- 6.Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multi-objective knapsack problems. Manag. Sci.
**48**(12), 1603–1612 (2002) MATHCrossRefGoogle Scholar - 7.Gomes da Silva, C., Clímaco, J., Figueira, J.: A scatter search method for bi-criteria {0,1}-knapsack problems. Eur. J. Oper. Res.
**169**(2), 373–391 (2006) MATHCrossRefGoogle Scholar - 8.Gomes da Silva, C., Clímaco, J., Figueira, J.: Core problems in bi-criteria {0, 1}-knapsack problems. Comput. Oper. Res.
**35**(7), 2292–2306 (2008) MathSciNetMATHCrossRefGoogle Scholar - 9.Gomes da Silva, C., Figueira, J., Clímaco, J.: Integrating partial optimization with scatter search for solving bi-criteria {0, 1}-knapsack problems. Eur. J. Oper. Res.
**177**(3), 1656–1677 (2007) MATHCrossRefGoogle Scholar - 10.Jenkins, L.: A bicriteria knapsack program for planning remediation of contaminated lightstation sites. Eur. J. Oper. Res.
**140**(2), 427–433 (2002) MATHCrossRefGoogle Scholar - 11.Klamroth, K., Wiecek, M.M.: Dynamic programming approaches to the multiple criteria knapsack problem. Nav. Res. Logist.
**47**(1), 57–76 (2000) MathSciNetMATHCrossRefGoogle Scholar - 12.Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004) MATHCrossRefGoogle Scholar
- 13.Kostreva, M., Ogryczak, W., Tonkyn, D.: Relocation problems arising in conservation biology. Comput. Math. Appl.
**37**(4–5), 135–150 (1999) MATHCrossRefGoogle Scholar - 14.Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput. Oper. Res.
**34**(9), 2674–2694 (2007) MathSciNetMATHCrossRefGoogle Scholar - 15.Martello, S., Toth, P.: Knapsack Problems—Algorithms and Computer Implementations. Wiley, New York (1990) MATHGoogle Scholar
- 16.Nemhauser, G., Ullmann, Z.: Discrete dynamic programming and capital allocation. Manag. Sci.
**15**(9), 494–505 (1969) MathSciNetMATHCrossRefGoogle Scholar - 17.Pisinger, D.: A minimal algorithm for the 0-1 knapsack problem. Oper. Res.
**45**, 758–767 (1997) MathSciNetMATHCrossRefGoogle Scholar - 18.Rosenblatt, M., Sinuany-Stern, Z.: Generating the discrete efficient fronteir to the capital budgeting problem. Oper. Res.
**37**(3), 384–394 (1989) MATHCrossRefGoogle Scholar - 19.Steuer, R.: Multiple Criteria Optimization: Theory, Computation and Application. Wiley, New York (1986) MATHGoogle Scholar
- 20.Teng, J., Tzeng, G.: A multiobjective programming approach for selecting non-independent transportation investiment alternatives. Transp. Res., Part B, Methodol.
**30**(4), 201–307 (1996) CrossRefGoogle Scholar - 21.Visée, M., Teghem, J., Pirlot, M., Ulungu, E.L.: Two-phases method and branch and bound procedures to solve the bi–objective knapsack problem. J. Glob. Optim.
**12**(2), 139–155 (1998) MATHCrossRefGoogle Scholar