Computational Optimization and Applications

, Volume 56, Issue 1, pp 153–185 | Cite as

On the optimal control of the Schlögl-model

  • Rico Buchholz
  • Harald Engel
  • Eileen Kammann
  • Fredi TröltzschEmail author


Optimal control problems for a class of 1D semilinear parabolic equations with cubic nonlinearity are considered. This class is also known as the Schlögl model. Main emphasis is laid on the control of traveling wave fronts that appear as typical solutions to the state equation.

The well-posedness of the optimal control problem and the regularity of its solution are proved. First-order necessary optimality conditions are established by standard adjoint calculus. The state equation is solved by the implicit Euler method in time and a finite element technique with respect to the spatial variable. Moreover, model reduction by Proper Orthogonal Decomposition is applied and compared with the numerical solution of the full problem. To solve the optimal control problems numerically, the performance of different versions of the nonlinear conjugate gradient method is studied. Various numerical examples demonstrate the capacities and limits of optimal control methods.


Schlögl model Semilinear parabolic equation Travelling wave front Optimal control Model reduction 



The authors are very grateful to Christopher Ryll (TU Berlin, Institute of Mathematics), who updated and partially improved the numerical results of the third author after she finished her university career.


  1. 1.
    Amann, H.: Abstract linear theory. In: Linear and Quasilinear Parabolic Problems, vol. I. Monographs in Mathematics, vol. 89. Birkhäuser, Boston (1995) CrossRefGoogle Scholar
  2. 2.
    Arian, E., Fahl, M., Sachs, E.W.: Trust-region proper orthogonal decomposition for flow control. Tech. rep., ICASE (2000). Technical Report 2000-25 Google Scholar
  3. 3.
    Bonnans, F., Casas, E.: Une principe de Pontryagine pour le contrôle des systèmes semilinéaires elliptiques. J. Differ. Equ. 90, 288–303 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Borzì, A., Griesse, R.: Distributed optimal control of lambda-omega systems. J. Numer. Math. 14(1), 17–40 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Casas, E.: Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35, 1297–1327 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Casas, E., De los Reyes, J.C., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19(2), 616–643 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010). doi: 10.1137/090766498 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Di Benedetto, E.: On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 13, 487–535 (1986) MathSciNetGoogle Scholar
  9. 9.
    Fahl, M., Sachs, E.W.: Reduced order modelling approaches to PDE-constrained optimization based on proper orthogonal decomposition. In: Biegler, L.T., Ghattas, O., Heinkenschloss, M., van Bloemen Waanders, B. (eds.) Large-Scale PDE-Constrained Optimization, vol. 30, pp. 268–280. Springer, Berlin (2003) CrossRefGoogle Scholar
  10. 10.
    Hager, W.W., Zhang, H.: CG DESCENT, a conjugate gradient method with guaranteed descent. Tech. rep., ACM TOMS (2006) Google Scholar
  11. 11.
    Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58 (2006) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Heinkenschloss, M., Sachs, E.W.: Numerical solution of a constrained control problem for a phase field model. In: Desch, W., Kappel, F., Kunisch, K. (eds.) Control and Estimation of Distributed Parameter Systems. ISNM, vol. 118, pp. 171–188. Birkhäuser, Basel (1994) CrossRefGoogle Scholar
  13. 13.
    Herzog, R., Kunisch, K.: Algorithms for PDE-constrained optimization. GAMM-Mitt. 33(2), 163–176 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: In: Optimization with PDE Constraints, vol. 23. Springer, Berlin (2009) CrossRefGoogle Scholar
  15. 15.
    Kammann, E., Tröltzsch, F., Volkwein, S.: A method of a-posteriori estimation with application to proper orthogonal decomposition. ESAIM: Math. Model. Numer. Anal. 47(2), 555–581 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90, 117–148 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kunisch, K., Wagner, M.: Optimal control of the bidomain system (I): the monodomain approximation with the Rogers-McCulloch model. Nonlinear Anal., Real World Appl. 13(4), 1525–1550 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kunisch, K., Wagner, M.: Optimal control of the bidomain system (II): Uniqueness and regularity theorems for weak solutions. Ann. Mat. Pura Appl. doi: 10.1007/s10231-012-0254-1
  19. 19.
    Kunisch, K., Wagner, M.: Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions. ESAIM: Math. Model. Numer. Anal. doi: 10.1051/m2an/2012058
  20. 20.
    Kunisch, K., Nagaiah, C., Wagner, M.: A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology. Comput. Vis. Sci. 14(6), 257–269 (2011) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer Series in Synergetics, vol. 19. Springer, Berlin (1984) zbMATHCrossRefGoogle Scholar
  22. 22.
    Leugering, G., Engell, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M., Ulbrich, S.: In: Constrained Optimization and Optimal Control for Partial Differential Equations. ISNM, vol. 160. Birkhäuser, Basel (2012) CrossRefGoogle Scholar
  23. 23.
    Löber, J.: Nonlinear excitation waves in spatially heterogenous reaction-diffusion systems. Tech. rep, TU Berlin, Institute of Theoretical Physics (2009) Google Scholar
  24. 24.
    Michailov, A.S.: Foundations of Synergetics, vol. 1. Springer, Berlin (1994) CrossRefGoogle Scholar
  25. 25.
    Müller, M.: Uniform convergence of the POD method and applications to optimal control. PhD thesis, Johannes Kepler University, Graz (2011) Google Scholar
  26. 26.
    Murray, J.D.: Mathematical Biology. Biomathematics, vol. 19, 2nd edn. Springer, Berlin (1993) zbMATHCrossRefGoogle Scholar
  27. 27.
    Raymond, J.P., Zidani, H.: Pontryagin’s principle for state-constrained control problems governed by parabolic equations with unbounded controls. SIAM J. Control Optim. 36, 1853–1879 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Schlögl, F.: A characteristic critical quantity in nonequilibrium phase transitions. Z. Phys. B, Condens. Matter 52, 51–60 (1983) CrossRefGoogle Scholar
  29. 29.
    Schöll, E., Schuster, H.: Handbook of Chaos Control, 2nd edn. Wiley-VCH, Weinheim (2008) zbMATHGoogle Scholar
  30. 30.
    Smoller, J.: Shock Waves and Reaction-Diffusion Equations, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258. Springer, New York (1994) zbMATHCrossRefGoogle Scholar
  31. 31.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications vol. 112. Am. Math. Soc., Providence (2010) zbMATHGoogle Scholar
  32. 32.
    Volkwein, S.: Model reduction using proper orthogonal decomposition. Lecture notes, Institute of Mathematics and Scientific Computing, University of Graz (2007) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rico Buchholz
    • 1
  • Harald Engel
    • 2
  • Eileen Kammann
    • 3
  • Fredi Tröltzsch
    • 3
    Email author
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthGermany
  2. 2.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany
  3. 3.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations