Computational Optimization and Applications

, Volume 55, Issue 3, pp 769–802 | Cite as

Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints

  • Dmitriy Leykekhman
  • Dominik Meidner
  • Boris Vexler


In this paper we consider a model elliptic optimal control problem with finitely many state constraints in two and three dimensions. Such problems are challenging due to low regularity of the adjoint variable. For the discretization of the problem we consider continuous linear elements on quasi-uniform and graded meshes separately. Our main result establishes optimal a priori error estimates for the state, adjoint, and the Lagrange multiplier on the two types of meshes. In particular, in three dimensions the optimal second order convergence rate for all three variables is possible only on properly refined meshes. Numerical examples at the end of the paper support our theoretical results.


Optimal control Finite elements Error estimates State constraints 


  1. 1.
    Alkhutov, Y.A., Kondrat’ev, V.A.: Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain. Differ. Equ. 28, 650–662 (1992) MathSciNetGoogle Scholar
  2. 2.
    Alt, H.W.: Lineare Funktionalanalysis: Eine Anwendungsorientierte Einführung, 6th edn. Springer Lehrbuch. Springer, Berlin (2012) MATHCrossRefGoogle Scholar
  3. 3.
    Apel, T., Sändig, A.M., Whiteman, J.R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19, 63–85 (1996) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Apel, T., Benedix, O., Sierch, D., Vexler, B.: A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49(3), 992–1005 (2011) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, Berlin (2007) Google Scholar
  6. 6.
    Casas, E.: Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM Control Optim. Calc. Var. 8, 345–374 (2002) (electronic). A tribute to J.L. Lions MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Casas, E.: Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints. ESAIM Control Optim. Calc. Var. 14(3), 575–589 (2008) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Casas, E., Mateos, M.: Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40(5), 1431–1454 (2002) (electronic) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Casas, E., Mateos, M.: Numerical approximation of elliptic control problems with finitely many pointwise constraints. Comput. Optim. Appl. 51(3), 1319–1343 (2012). doi: 10.1007/s10589-011-9394-2 MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics Appl. Math., vol. 40. SIAM, Philadelphia (2002) CrossRefGoogle Scholar
  11. 11.
    D’Angelo, C.: Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50(1), 194–215 (2012). doi: 10.1137/100813853 MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J. Numer. Anal. 45(5), 1937–1953 (2007) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Demlow, A., Guzmán, J., Schatz, A.H.: Local energy estimates for the finite element method on sharply varying grids. Math. Comput. 80(273), 1–9 (2011). doi: 10.1090/S0025-5718-2010-02353-1 MATHGoogle Scholar
  14. 14.
    Eriksson, K.: Improved accuracy by adapted mesh-refinements in the finite element method. Math. Comput. 44(170), 321–343 (1985). doi: 10.2307/2007955 MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Fritzsch, R.: Optimale Finite-Elemente-Approximationen für Funktionen mit Singularitäten. Ph.D. thesis, TU Dresden, Dresden, Germany (1990) Google Scholar
  16. 16.
    Fromm, S.J.: Potential space estimates for Green potentials in convex domains. Proc. Am. Math. Soc. 119, 225–233 (1993) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition MATHGoogle Scholar
  18. 18.
    Grüter, M., Widman, K.O.: The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303–342 (1982) MATHCrossRefGoogle Scholar
  19. 19.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, Berlin (2008) Google Scholar
  20. 20.
    Leykekhman, D.: Investigation of commutative properties of discontinuous Galerkin methods in pde constrained optimal control problems. J. Sci. Comput. 53(3), 483–511 (2012) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Li, H., Mazzucato, A., Nistor, V.: Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains. Electron. Trans. Numer. Anal. 37, 41–69 (2010) MathSciNetMATHGoogle Scholar
  22. 22.
    May, S., Rannacher, R., Vexler, B.: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems (2010, submitted) Google Scholar
  23. 23.
    Merino, P., Tröltzsch, F., Vexler, B.: Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space. Modél. Math. Anal. Numér. 44(1), 167–188 (2010). doi: 10.1051/m2an/2009045 MATHCrossRefGoogle Scholar
  24. 24.
    Merino, P., Neitzel, I., Tröltzsch, F.: On linear-quadratic elliptic control problems of semi-infinite type. Appl. Anal. 90(6), 1047–1074 (2011). doi: 10.1080/00036811.2010.489187 MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Oganesyan, L.A., Rukhovets, L.A.: Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary. USSR Comput. Math. Math. Phys. 8, 129–152 (1968) CrossRefGoogle Scholar
  26. 26.
    Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38, 437–445 (1982) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    RoDoBo: A C++ library for optimization with stationary and nonstationary PDEs with interface to gascoigne [29].
  28. 28.
    Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimates for finite element methods, part II. Math. Comput. 64(211), 907–928 (1995) MathSciNetMATHGoogle Scholar
  29. 29.
    The finite element toolkit gascoigne:

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dmitriy Leykekhman
    • 1
  • Dominik Meidner
    • 2
  • Boris Vexler
    • 2
  1. 1.Department of MathematicsUniversity of ConnecticutStorrsUSA
  2. 2.Lehrstuhl für Mathematische Optimierung, Fakultät für MathematikTechnische Universität MünchenGarching b. MünchenGermany

Personalised recommendations