Computational Optimization and Applications

, Volume 54, Issue 2, pp 417–440 | Cite as

A cyclic projected gradient method

Article

Abstract

In recent years, convex optimization methods were successfully applied for various image processing tasks and a large number of first-order methods were designed to minimize the corresponding functionals. Interestingly, it was shown recently in Grewenig et al. (2010) that the simple idea of so-called “superstep cycles” leads to very efficient schemes for time-dependent (parabolic) image enhancement problems as well as for steady state (elliptic) image compression tasks. The “superstep cycles” approach is similar to the nonstationary (cyclic) Richardson method which has been around for over sixty years.

In this paper, we investigate the incorporation of superstep cycles into the projected gradient method. We show for two problems in compressive sensing and image processing, namely the LASSO approach and the Rudin-Osher-Fatemi model that the resulting simple cyclic projected gradient algorithm can numerically compare with various state-of-the-art first-order algorithms. However, due to the nonlinear projection within the algorithm convergence proofs even under restrictive assumptions on the linear operators appear to be hard. We demonstrate the difficulties by studying the simplest case of a two-cycle algorithm in ℝ2 with projections onto the Euclidean ball.

Keywords

Constrained optimization Projected gradient methods Fast explicit diffusion Image denoising Sparse recovery 

References

  1. 1.
    Alexiades, V., Amiez, G., Gremaud, P.A.: Super-time-stepping acceleration of explicit schemes for parabolic problems. Commun. Numer. Methods Eng. 12, 31–42 (1996) MATHCrossRefGoogle Scholar
  2. 2.
    Anderssen, R.S., Golub, G.H.: Richardson’s non-stationary matrix iterative procedure. Tech. rep., Stanford University, Stanford, CA, USA (1972) Google Scholar
  3. 3.
    Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011) MATHCrossRefGoogle Scholar
  5. 5.
    Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring. SIAM J. Imaging Sci. 2, 183–202 (2009) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bertsekas, D.P.: On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Autom. Control 21, 174–183 (1976) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999) MATHGoogle Scholar
  8. 8.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813—Software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001) MATHCrossRefGoogle Scholar
  10. 10.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23, 539–559 (2003) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Birman, M.S.: On a variant of the method of successive approximations. Vestn. Leningr. Univ. 9, 69–76 (1952) MathSciNetGoogle Scholar
  12. 12.
    Bonettini, S., Ruggiero, V.: On the convergence of primal-dual hybrid gradient algorithms for total variation image restoration. J. Math. Imaging Vis. 44(3), 236–253 (2012) MATHCrossRefGoogle Scholar
  13. 13.
    Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006) MATHCrossRefGoogle Scholar
  14. 14.
    Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR. LNCS, vol. 3757, pp. 136–152. Springer, Berlin (2005) CrossRefGoogle Scholar
  15. 15.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numer. Math. 100, 21–47 (2005) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Dai, Y.H., Hager, W.W., Schittkowski, K., Zhang, H.: The cyclic Barzilai-Borwein method for unconstrained optimization. IMA J. Numer. Anal. 26, 604–627 (2006) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gradient methods. J. Ind. Manag. Optim. 4(2), 299–312 (2008) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Gavurin, M.K.: The use of polynomials of best approximation for the improvement of the convergence of iteration processes. Usp. Mat. Nauk 5, 156–160 (1950) MathSciNetMATHGoogle Scholar
  21. 21.
    Gentzsch, W.: Numerical solution of linear and non-linear parabolic differential equations by a time discretisation of third order accuracy. In: Hirschel, E.H. (ed.) Proceedings of the Third GAMM Conference on Numerical Methods in Fluid Dynamics, pp. 109–117. Vieweg, Wiesbaden (1979) Google Scholar
  22. 22.
    Gentzsch, W., Schlüter, A.: Über ein Einschrittverfahren mit zyklischer Schrittweitenänderung zur Lösung parabolischer Differentialgleichungen. Z. Angew. Math. Mech. 58, 415–416 (1978) MathSciNetGoogle Scholar
  23. 23.
    Goldstein, A.A.: Convex programming in Hilbert space. Bull. Am. Math. Soc. 70, 709–710 (1964) MATHCrossRefGoogle Scholar
  24. 24.
    Grewenig, S., Weickert, J., Bruhn, A.: From Box filtering to fast explicit diffusion. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. Lecture Notes in Computer Science, vol. 6376, pp. 533–542. Springer, Berlin (2010) CrossRefGoogle Scholar
  25. 25.
    Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM J. Optim. 17, 526–557 (2006) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Lebedev, V., Finogenov, S.: Ordering of the iterative parameters in the cyclical Chebyshev iterative method. USSR Comput. Math. Math. Phys. 11(2), 155–170 (1971) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Levitin, E.S., Polyak, B.T.: Constrained minimization problems. USSR Comput. Math. Math. Phys. 6, 1–50 (1966) CrossRefGoogle Scholar
  28. 28.
    Lorenz, D.A.: Constructing test instances for basis pursuit denoising. Tech. rep., TU Braunschweig (2011). arXiv:1103.2897
  29. 29.
    Loris, I., Bertero, M., Mol, C.D., Zanella, R., Zanni, L.: Accelerating gradient projection methods for l1-constrained signal recovery by steplength selection rules. Appl. Comput. Harmon. Anal. 27(2), 247–254 (2009) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Nesterov, Y.E.: A method of solving a convex programming problem with convergence rate O(1/k 2). Sov. Math. Dokl. 27(2), 372–376 (1983) MATHGoogle Scholar
  31. 31.
    Nesterov, Y.E.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992) MATHCrossRefGoogle Scholar
  33. 33.
    Steidl, G.: A note on the dual treatment of higher order regularization functionals. Computing 76, 135–148 (2006) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1994) MathSciNetGoogle Scholar
  35. 35.
    van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 890–912 (2008) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Wen, Z., Yin, W., Goldfarb, D., Zhang, Y.: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation. SIAM J. Sci. Comput. 32, 1832–1857 (2009) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Young, D.: On Richardson’s method for solving linear systems with positive definite matrices. J. Math. Phys. 32, 243–255 (1954) MATHGoogle Scholar
  38. 38.
    Zawilski, A.: Numerical stability of the cyclic Richardson iteration. Numer. Math. 60, 251–290 (1991) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Zhou, B., Gao, L., Dai, Y.H.: Gradient methods with adaptive step-sizes. Comput. Optim. Appl. 35, 69–86 (2005) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zhu, M.: Fast numerical algorithms for total variation based image restoration. Ph.D. thesis, University of California, Los Angeles, USA (2008) Google Scholar
  41. 41.
    Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Tech. rep., UCLA, Center for Applied Math (2008) Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Simon Setzer
    • 1
  • Gabriele Steidl
    • 2
  • Jan Morgenthaler
    • 2
  1. 1.Dept. of Mathematics and Computer ScienceSaarland UniversitySaarbrückenGermany
  2. 2.Dept. of Mathematics, Felix-Klein-CenterUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations