Advertisement

Computational Optimization and Applications

, Volume 54, Issue 2, pp 317–342 | Cite as

Bregman operator splitting with variable stepsize for total variation image reconstruction

  • Yunmei Chen
  • William W. Hager
  • Maryam YashtiniEmail author
  • Xiaojing Ye
  • Hongchao Zhang
Article

Abstract

This paper develops a Bregman operator splitting algorithm with variable stepsize (BOSVS) for solving problems of the form \(\min\{\phi(Bu) +1/2\|Au-f\|_{2}^{2}\}\), where ϕ may be nonsmooth. The original Bregman Operator Splitting (BOS) algorithm employed a fixed stepsize, while BOSVS uses a line search to achieve better efficiency. These schemes are applicable to total variation (TV)-based image reconstruction. The stepsize rule starts with a Barzilai-Borwein (BB) step, and increases the nominal step until a termination condition is satisfied. The stepsize rule is related to the scheme used in SpaRSA (Sparse Reconstruction by Separable Approximation). Global convergence of the proposed BOSVS algorithm to a solution of the optimization problem is established. BOSVS is compared with other operator splitting schemes using partially parallel magnetic resonance image reconstruction problems. The experimental results indicate that the proposed BOSVS algorithm is more efficient than the BOS algorithm and another split Bregman Barzilai-Borwein algorithm known as SBB.

Keywords

Total variation image reconstruction Bregman operator splitting Barzilai-Borwein stepsize SpaRSA Convergence analysis Magnetic resonance imaging 

Notes

Acknowledgements

The authors thank Invivo Corporation and Dr. Feng Huang for providing the PPI data used in the paper.

References

  1. 1.
    Baraniuk, R., Steeghs, P.: Compressive radar imaging. In: 2007 IEEE Radar Conference, pp. 128–133 (2007) CrossRefGoogle Scholar
  2. 2.
    Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Block, K., Uecker, M., Frahm, J.: Undersampled radial MRI with multiple coils: iterative image reconstruction using a total variation constraint. Magn. Reson. Med. 57, 1086–1098 (2007) CrossRefGoogle Scholar
  4. 4.
    Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variationbased image restoration. SIAM J. Optim. 20, 1964–1977 (1999) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen, Y., Hager, W.W., Huang, F., Phan, D.T., Ye, X., Yin, W.: Fast algorithms for image reconstruction with application to partially parallel MR imaging. SIAM J. Imaging Sci. 5, 90–118 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Darbon, J., Sigelle, M.: A fast and exact algorithm for total variation minimization. In: Lecture Notes in Comput. Sci. IbPRIA, vol. 3522, pp. 351–359. Springer, Berlin (2005) Google Scholar
  7. 7.
    Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 351–359 (2006) Google Scholar
  8. 8.
    Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrange Methods: Applications to the Solution of Boundary-Valued Problems, pp. 299–331. North Holland, Amsterdam (1983) CrossRefGoogle Scholar
  9. 9.
    Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hager, W.W., Phan, D.T., Zhang, H.: Gradient-based methods for sparse recovery. SIAM J. Imaging Sci. 4, 146–165 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Huang, Y., Ng, M.K., Wen, Y.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2, 20–40 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Li, Y., Santosa, F.: An affine scalling algorithm for minimizing total variation in image enhancement. Tech. Rep. TR94-1470, Cornell Theory Center, Cornell University, Ithaca, NY (1994) Google Scholar
  14. 14.
    Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007) CrossRefGoogle Scholar
  15. 15.
    Pruessmann, K., Weiger, M., Bornert, P., Boesiger, P.: Advances in sensitivity encoding with arbitrary k-space trajectories. Magn. Reson. Med. 46, 638–651 (2001) CrossRefGoogle Scholar
  16. 16.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) zbMATHGoogle Scholar
  17. 17.
    Rudin, L., Osher, S., Fatemi, E.: Non-linear total variation noise removal algorithm. Physica D 60, 259–268 (1992) zbMATHCrossRefGoogle Scholar
  18. 18.
    Strong, D., Chan, T.: Edge preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19, 165–187 (2003) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Vogel, C.R.: A multigrid method for total variation-based image denoising. In: Bowers, K., Lund, J. (eds.) Computation and Control IV. Progess in Systems and Control Theory, vol. 20, pp. 323–331. Birkhauser, Boston (1995) CrossRefGoogle Scholar
  20. 20.
    Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57, 2479–2493 (2009) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J. Sel. Top. Signal Process. 4, 288–297 (2010) CrossRefGoogle Scholar
  24. 24.
    Ye, X., Chen, Y., Huang, F.: Computational acceleration for MR image reconstruction in partially parallel imaging. IEEE Trans. Med. Imaging 30, 1055–1063 (2011) CrossRefGoogle Scholar
  25. 25.
    Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–276 (2011) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46, 20–46 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Tech. Rep. 08-34, CAM UCLA (2008) Google Scholar
  28. 28.
    Zhu, M., Wright, S., Chan, T.: Duality-based algorithms for total-variation-regularized image restoration. Comput. Optim. Appl. 47, 377–400 (2010) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yunmei Chen
    • 1
  • William W. Hager
    • 1
  • Maryam Yashtini
    • 1
    Email author
  • Xiaojing Ye
    • 2
  • Hongchao Zhang
    • 3
  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of MathematicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations