Computational Optimization and Applications

, Volume 53, Issue 2, pp 395–423 | Cite as

An active set feasible method for large-scale minimization problems with bound constraints



We are concerned with the solution of the bound constrained minimization problem {minf(x), lxu}. For the solution of this problem we propose an active set method that combines ideas from projected and nonmonotone Newton-type methods. It is based on an iteration of the form xk+1=[xk+αkdk], where αk is the steplength, dk is the search direction and [⋅] is the projection operator on the set [l,u]. At each iteration a new formula to estimate the active set is first employed. Then the components \(d_{N}^{k}\) of dk corresponding to the free variables are determined by a truncated Newton method, and the components \(d_{A}^{k}\) of dk corresponding to the active variables are computed by a Barzilai-Borwein gradient method. The steplength αk is computed by an adaptation of the nonmonotone stabilization technique proposed in Grippo et al. (Numer. Math. 59:779–805, 1991). The method is a feasible one, since it maintains feasibility of the iterates xk, and is well suited for large-scale problems, since it uses matrix-vector products only in the truncated Newton method for computing \(d_{N}^{k}\). We prove the convergence of the method, with superlinear rate under usual additional assumptions. An extensive numerical experimentation performed on an algorithmic implementation shows that the algorithm compares favorably with other widely used codes for bound constrained problems.


Bound constrained minimization problems Large-scale minimization problems Active set methods Projected Newton-type methods Nonmonotone Newton-type methods Barzilai-Borwein gradient methods 

Supplementary material

10589_2012_9506_MOESM1_ESM.pdf (90 kb)
Computational Results for NMBC_1, NMBC_2, GENCAN, LANCELOT B, ASA_CG (PDF 90 kB)


  1. 1.
    Andreani, R., Birgin, E.G., Martinez, J.M., Schuverdt, M.L.: Second-order negative-curvature methods for box-constrained and general constrained optimization. Comput. Optim. Appl. 45(2), 209–236 (2010) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20(2), 221–246 (1982) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Birgin, E.G., Gentil, J.M.: Evaluating bound-constrained minimization. Comput. Optim. Appl. (2012). doi:10.1007/s10589-012-9466-y Google Scholar
  4. 4.
    Birgin, E.G., Martinez, J.M.: A box constrained optimization algorithm with negative curvature directions and spectral projected gradients. Computing, Suppl. 15, 49–60 (2001) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Birgin, E.G., Martinez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Conn, A., Gould, N., Toint, Ph.: Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25, 433–460 (1988) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Dembo, R.S., Steihaug, T.: Truncated Newton algorithms for large scale unconstrained optimization. Math. Program. 26, 190–212 (1983) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dennis, J.E., Heinkenschloss, M., Vicente, L.N.: Trust-region interior-point algorithms for a class of nonlinear programming problems. SIAM J. Control Optim. 36, 1750–1794 (1998) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profile. Math. Program. 91, 201–213 (2002) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Fasano, G., Lucidi, S.: A nonmonotone Newton-Krylov method exploiting negative curvature directions, for large scale unconstrained optimization. Optim. Lett. 3, 521–535 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Facchinei, F., Lucidi, S., Palagi, L.: A truncated Newton algorithm for large scale box constrained optimization. SIAM J. Optim. 12(4), 1100–1125 (2002) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Friedlander, A., Martinez, J.M., Santos, S.A.: A new trust region algorithm for bound constrained minimization. Appl. Math. Optim. 30, 235–266 (1994) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numer. Math. 59, 779–805 (1991) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60(3), 401–419 (1989) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gould, N., Orban, D., Toint, Ph.: GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gould, N.I.M., Orban, D., Toint, Ph.: CUTEr (and SifDec): a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM J. Optim. 17, 526–557 (2006) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption. Math. Program. 86, 615–635 (1999) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kanzow, C., Klug, A.: On affine-scaling interior-point Newton methods for nonlinear minimization with bound constraints. Comput. Optim. Appl. 35(2), 177–197 (2006) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Lin, C.J., Moré, J.J.: Nexton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9(4), 1100–1127 (1999) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Moré, J.J., Toraldo, G.: Algorithms for bound constrained quadratic programming problems. Numer. Math. 55, 377–400 (1989) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Moré, J.J., Toraldo, G.: Numerical solution of large quadratic programming problems with bound constraints. SIAM J. Control Optim. 1, 93–113 (1991) MATHGoogle Scholar
  23. 23.
    Schwartz, A., Polak, E.: Family of projected descent methods for optimization problems with simple bounds. J. Optim. Theory Appl. 92(1), 1–31 (1997) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Ulbrich, M., Ulbrich, S., Heinkenschloss, M.: Global convergence of trust-region interior-point algorithms for infinite-dimensional nonconvex minimization subject to pointwise bounds. SIAM J. Control Optim. 37, 731–776 (1999) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Zhang, Y.: Interior-point gradient methods with diagonal-scalings for simple-bound constrained optimization. Tech. report TR04-06, Department of Computational and Applied Mathematics, Rice University, Houston, TX (2004) Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Dipartimento di Informatica e SistemisticaSapienza Università di RomaRomaItaly

Personalised recommendations