Computational Optimization and Applications

, Volume 54, Issue 3, pp 461–472 | Cite as

A subgradient method for multiobjective optimization

  • J. X. Da Cruz Neto
  • G. J. P. Da Silva
  • O. P. Ferreira
  • J. O. Lopes
Article

Abstract

A method for solving quasiconvex nondifferentiable unconstrained multiobjective optimization problems is proposed in this paper. This method extends to the multiobjective case of the classical subgradient method for real-valued minimization. Assuming the basically componentwise quasiconvexity of the objective components, full convergence (to Pareto optimal points) of all the sequences produced by the method is established.

Keywords

Pareto optimality or efficiency Multiobjective optimization Subgradient method Quasi-Féjer convergence 

References

  1. 1.
    Avriel, M.: Nonlinear Programming: Analysis and Methods. Dover, New York (2003) MATHGoogle Scholar
  2. 2.
    Burachik, R.S., Graña Drummond, L.M., Iusem, A.N., Svaiter, B.F.: Full convergence of the steepest descent method with inexact line search. Optimization 32, 137–146 (1995) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Censor, Y., Segal, A.: Algorithms for the quasiconvex feasibility problem. J. Comput. Appl. Math. 185, 34–50 (2006) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Flieg, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51, 479–494 (2000) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gal, T., Hanne, T.: On the development and future aspects of vector optimization and MCDM. In: Cláco, J. (ed.) Multicriteria Analysis, pp. 130–145. Springer, Berlin (1997) CrossRefGoogle Scholar
  6. 6.
    Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28, 5–29 (2004) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175, 395–414 (2005) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Gutiérrez Díez, J.M.: Infragradients and directions of decrease. Rev. R. Acad. Cienc. Exactas Fís. Nat. Madr. 78, 523–532 (1984) MATHGoogle Scholar
  10. 10.
    Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. SMC-1, 296–297 (1971) MathSciNetGoogle Scholar
  11. 11.
    Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 306. Springer, Berlin (1993) MATHGoogle Scholar
  12. 12.
    Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math. Oper. Res. 19, 790–814 (1994) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Luc, T.D.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989) CrossRefGoogle Scholar
  14. 14.
    Mäkelä, M.M., Ännikkö, T.M.: Numerical solution of nonsmooth optimal control problems with an application to the continuous casting process. Adv. Math. Sci. Appl. 4, 491–515 (1994) MathSciNetMATHGoogle Scholar
  15. 15.
    Miettinen, K., Mäkelä, M.M.: An interactive method for nonsmooth multiobjective optimization with an application to optimal control. Optim. Methods Softw. 2, 31–44 (1993) CrossRefGoogle Scholar
  16. 16.
    Plastria, F.: Lower subdifferentiable functions and their minimization by cutting planes. J. Optim. Theory Appl. 46, 37–53 (1985) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Rockafellar, B.F.: Convex Analysis. Princeton University Press, Princeton (1970) MATHGoogle Scholar
  18. 18.
    Tammer, C., Winkler, K.: A new scalarization approach and applications in multicriteria. J. Nonlinear Convex Anal. 4, 365–380 (2003) MathSciNetMATHGoogle Scholar
  19. 19.
    Xu, H., Rubinov, A.M., Glover, B.M.: Strict lower subdifferentiability and applications. J. Aust. Math. Soc. Ser. B, Appl. Math 40, 379–391 (1999) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    White, D.J.: A bibliography on the applications of mathematical programming multiple objective methods. J. Oper. Res. Soc. 41, 669–691 (1990) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • J. X. Da Cruz Neto
    • 1
  • G. J. P. Da Silva
    • 2
  • O. P. Ferreira
    • 2
  • J. O. Lopes
    • 1
  1. 1.DMUniversidade Federal do PiauíTeresinaBrazil
  2. 2.IMEUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations