Computational Optimization and Applications

, Volume 54, Issue 1, pp 93–109 | Cite as

A practical but rigorous approach to sum-of-ratios optimization in geometric applications

  • Takahito KunoEmail author
  • Toshiyuki Masaki


In this paper, we develop an algorithm for minimizing the L q norm of a vector whose components are linear fractional functions, where q is an arbitrary positive integer. The problem is a kind of sum-of-ratios optimization problem, and often occurs in computer vision. In that case, it is characterized by a large number of ratios and a small number of variables. The algorithm we propose here exploits this feature and generates a globally optimal solution in a practical amount of computational time.


Global optimization Sum-of-ratios optimization Branch-and-bound Computer vision Multiple-view geometry 


  1. 1.
    Almogy, Y., Levin, O.: Parametric analysis of a multi-stage stochastic shipping problem. In: Proceedings of the Fifth IFORS Conference, Venice, pp. 359–370 (1969) Google Scholar
  2. 2.
    Arkin, E.M., Chiang, Y.-J., Held, M., Mitchell, J.S.B., Sacristan, V., Skiena, S.S., Yang, T.-C.: On minimum-area hulls. Algorithmica 21, 119–136 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bartoli, A., Lapreste, J.-T.: Triangulation for points on lines. Image Vis. Comput. 26, 315–324 (2008) CrossRefGoogle Scholar
  4. 4.
    Benson, H.P.: Global optimization algorithm for the nonlinear sum of ratios problem. J. Optim. Theory Appl. 112, 1–29 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Benson, H.P.: Using concave envelopes to globally solve the nonlinear sum of ratios problem. J. Glob. Optim. 22, 343–364 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Charnes, A., Cooper, W.W.: Programming with linear fractional functionals. Nav. Res. Logist. Q. 9, 181–186 (1962) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chen, D.Z., Daescu, O., Dai, Y., Katoh, N., Wu, X., Xu, J.: Efficient algorithms and implementations for optimizing the sum of linear fractional functions, with applications. J. Comb. Optim. 9, 69–90 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Manag. Sci. 15, 550–569 (1969) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Freund, R.W., Jarre, F.: Solving the sum-of-ratios problem by an interior-point method. J. Glob. Optim. 19, 83–102 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Hartley, R., Kahl, F.: Optimal algorithms in multiview geometry. In: Proceedings of the Asian Conference on Computer Vision, vol. 1, pp. 13–34 (2007) Google Scholar
  12. 12.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 2nd edn. Springer, Berlin (1993) Google Scholar
  13. 13.
    Kahl, F., Agarwal, S., Chandraker, M.K., Kriegman, D., Belongie, S.: Practical global optimization for multiview geometry. Int. J. Comput. Vis. 79, 271–284 (2008) CrossRefGoogle Scholar
  14. 14.
    Konno, H., Inori, M.: Bond portfolio optimization by bilinear fractional programming. J. Oper. Res. Soc. Jpn. 32, 143–158 (1989) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Konno, H., Watanabe, H.: Bond portfolio optimization problems and their applications to index tracking: a partial optimization approach. J. Oper. Res. Soc. Jpn. 39, 295–306 (1996) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kuno, T.: A branch-and-bound algorithm for maximizing the sum of several linear ratios. J. Glob. Optim. 22, 155–174 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kuno, T.: A revision of the trapezoidal branch-and-bound algorithm for linear sum-of-ratios problems. J. Glob. Optim. 33, 435–464 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Majhi, J., Janardan, R., Schwerdt, J., Smid, M., Gupta, P.: Minimizing support structures and trapped area in two-dimensional layered manufacturing. Comput. Geom. 12, 241–267 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Mangasarian, O.L.: Nonlinear Programming. Krieger, Melbourne (1969) zbMATHGoogle Scholar
  20. 20.
    Matsui, T.: NP-hardness of linear multiplicative programming and related problems. J. Glob. Optim. 9, 113–119 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. Assoc. Comput. Mach. 31, 114–127 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tuy, H.: Convex Analysis and Global Optimization. Kluwer Academic, Dordrecht (1998) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Graduate School of Systems and Information EngineeringUniversity of TsukubaTsukubaJapan

Personalised recommendations