Computational Optimization and Applications

, Volume 53, Issue 2, pp 301–322 | Cite as

Margin maximization in spherical separation

  • Annabella Astorino
  • Antonio Fuduli
  • Manlio GaudiosoEmail author


We face the problem of strictly separating two sets of points by means of a sphere, considering the two cases where the center of the sphere is fixed or free, respectively. In particular, for the former we present a fast and simple solution algorithm, whereas for the latter one we use the DC-Algorithm based on a DC decomposition of the error function. Numerical results for both the cases are presented on several classical binary datasets drawn from the literature.


Sperical separation DC function DCA 


  1. 1.
    An, L.T.H., Tao, P.D.: The DC (Difference of Convex Functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Astorino, A., Fuduli, A.: Nonsmooth optimization techniques for semisupervised classification. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2135–2142 (2007) CrossRefGoogle Scholar
  3. 3.
    Astorino, A., Fuduli, A., Gaudioso, M.: DC models for spherical separation. J. Glob. Optim. 48, 657–669 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Astorino, A., Gaudioso, M.: Polyhedral separability through successive LP. J. Optim. Theory Appl. 112, 265–293 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Astorino, A., Gaudioso, M.: Ellipsoidal separation for classification problems. Optim. Methods Softw. 20, 261–270 (2005) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Astorino, A., Gaudioso, M.: A fixed-center spherical separation algorithm with kernel transformations for classification problems. Comput. Manag. Sci. 6, 357–372 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bagirov, A.M.: Max-min separability. Optim. Methods Softw. 20, 271–290 (2005) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at CrossRefGoogle Scholar
  9. 9.
    Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pp. 57–64 (2005) Google Scholar
  10. 10.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000) Google Scholar
  11. 11.
    Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using the second order information for training SVM. J. Mach. Learn. Res. 6, 1889–1918 (2005) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14, 743–756 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gonzalez-Lima, M., Hager, W., Zhang, H.: An affine-scaling interior-point method for continuous knapsack constraints with application to support vector machines. SIAM J. Optim. 21, 361–390 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hao, P.Y., Chiang, J.H., Lin, Y.H.: A new maximal-margin spherical-structured multi-class support vector machine. Appl. Intell. 30, 98–111 (2009) CrossRefGoogle Scholar
  15. 15.
    Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods—Support Vector Learning. MIT Press, Cambridge (1999) Google Scholar
  16. 16.
    Konno, H., Gotoh, J., Uryasev, S.: Failure discrimination by semi-definite programming. In: Pardalos, P. (ed.) Financial Engineering, Electronic Commerce and Supply Chain, pp. 379–396. Kluwer Academic Publishers, Dordrecht (2002) Google Scholar
  17. 17.
    Murphy, P.M., Aha, D.W.: UCI repository of machine learning databases. (1992)
  18. 18.
    Palagi, L., Sciandrone, M.: On the convergence of a modified version of the SVMlight algorithm. Optim. Methods Softw. 20, 315–332 (2005) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Odewahn, S., Stockwell, E., Pennington, R., Humphreys, R., Zumach, W.: Automated star/galaxy discrimination with neural networks. Astron. J. 103, 318–331 (1992) CrossRefGoogle Scholar
  20. 20.
    Schölkopf, B., Burges, C.J.C., Smola, A.J.: Advances in Kernel Methods. Support Vector Learning. MIT Press, Cambridge (1999) Google Scholar
  21. 21.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004) CrossRefGoogle Scholar
  22. 22.
    Tao, P.D., An, L.T.H.: A D.C. optimization algorithm for solving the trust-region subproblem. SIAM J. Control Optim. 8, 476–505 (1998) zbMATHGoogle Scholar
  23. 23.
    Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recognit. Lett. 20, 1191–1199 (1999) CrossRefGoogle Scholar
  24. 24.
    Tax, D.M.J., Duin, R.P.W.: Uniform object generation for optimizing one-class classifiers. J. Mach. Learn. Res. 2, 155–173 (2001) Google Scholar
  25. 25.
    Vapnik, V.: The Nature of the Statistical Learning Theory. Springer, New York (1995) zbMATHGoogle Scholar
  26. 26.
    Wang, J., Neskovic, P., Cooper, L.N.: Pattern Classification via Single Spheres. Lecture Notes in Artificial Intelligence, vol. 3735, pp. 241–252 (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Annabella Astorino
    • 1
  • Antonio Fuduli
    • 2
  • Manlio Gaudioso
    • 3
    Email author
  1. 1.Istituto di Calcolo e Reti ad Alte Prestazioni C.N.R.Consiglio Nazionale delle RicercheRendeItaly
  2. 2.Dipartimento di MatematicaUniversità della CalabriaRendeItalia
  3. 3.Dipartimento di Elettronica Informatica e SistemisticaUniversità della CalabriaRendeItalia

Personalised recommendations