Computational Optimization and Applications

, Volume 53, Issue 2, pp 619–648

Strong duality and minimal representations for cone optimization



The elegant theoretical results for strong duality and strict complementarity for linear programming, LP, lie behind the success of current algorithms. In addition, preprocessing is an essential step for efficiency in both simplex type and interior-point methods. However, the theory and preprocessing techniques can fail for cone programming over nonpolyhedral cones. We take a fresh look at known and new results for duality, optimality, constraint qualifications, CQ, and strict complementarity, for linear cone optimization problems in finite dimensions. One theme is the notion of minimal representation of the cone and the constraints. This provides a framework for preprocessing cone optimization problems in order to avoid both the theoretical and numerical difficulties that arise due to the (near) loss of the strong CQ, strict feasibility. We include results and examples on the surprising theoretical connection between duality gaps in the original primal-dual pair and lack of strict complementarity in their homogeneous counterpart. Our emphasis is on results that deal with Semidefinite Programming, SDP.


Cone optimization Duality Preprocessing Constraint qualification Duality gap Semidefinite programming Strict complementarity Nice cones Devious cones Facially dual complete cones 


  1. 1.
    Abrams, R.A., Ben-Israel, A.: Optimality conditions and recession cones. Oper. Res. 23(3), 549–553 (1975) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program., Ser. B 95(1), 3–51 (2003) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results. SIAM J. Optim. 8, 746–768 (1998) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Andersen, E.D., Roos, C., Terlaky, T.: Notes on duality in second order and p-order cone optimization. Optimization 51(4), 627–643 (2002) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Anjos, M.F., Wolkowicz, H.: Strengthened semidefinite relaxations via a second lifting for the Max-Cut problem. Discrete Appl. Math. 119(1–2), 79–106 (2002) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer Monographs in Mathematics. Springer, New York (2003) MATHGoogle Scholar
  7. 7.
    Barker, G.P.: The lattice of faces of a finite dimensional cone. Linear Algebra Appl. 7, 71–82 (1973) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Barker, G.P.: Faces and duality in convex cones. Linear Multilinear Algebra 6(3), 161–169 (1978/1979) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ben-Israel, A., Ben-Tal, A., Zlobec, S.: Optimality in Nonlinear Programming: A Feasible Directions Approach. Wiley-Interscience, New York (1981) MATHGoogle Scholar
  10. 10.
    Berman, A.: Cones, Matrices and Mathematical Programming. Springer, Berlin, New York (1973) MATHCrossRefGoogle Scholar
  11. 11.
    Bertsekas, D.P., Tseng, P.: Set intersection theorems and existence of optimal solutions. Math. Program. 110(2), 287–314 (2007) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Borwein, J.M., Moors, W.B.: Stability of closedness of convex cones under linear mappings. J. Convex Anal. 16, 699–705 (2009) MathSciNetMATHGoogle Scholar
  13. 13.
    Borwein, J.M., Wolkowicz, H.: Characterization of optimality for the abstract convex program with finite-dimensional range. J. Aust. Math. Soc. A 30(4), 390–411 (1980/1981) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Borwein, J.M., Wolkowicz, H.: Facial reduction for a cone-convex programming problem. J. Aust. Math. Soc. A 30(3), 369–380 (1980/81) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Borwein, J.M., Wolkowicz, H.: Regularizing the abstract convex program. J. Math. Anal. Appl. 83(2), 495–530 (1981) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Borwein, J.M., Wolkowicz, H.: Characterizations of optimality without constraint qualification for the abstract convex program. Math. Program. Stud. 19, 77–100 (1982) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Brøndsted, A.: Les faces d’un cône convexe abstrait. C. R. Math. Acad. Sci. Paris, Sér. A-B 280(7), A435–A437 (1975), also see p. Aii Google Scholar
  18. 18.
    Cheung, Y.-L., Schurr, S., Wolkowicz, H.: Preprocessing and reduction for degenerate semidefinite programs. Technical Report CORR 2011-02, University of Waterloo, Waterloo, Ontario (2011).
  19. 19.
    Chua, C.B.: Relating homogeneous cones and positive definite cones via T-algebras. SIAM J. Optim. 14(2), 500–506 (2003) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Chua, C.B., Tunçel, L.: Invariance and efficiency of convex representations. Math. Program. 111(1–2), 113–140 (2008) MathSciNetMATHGoogle Scholar
  21. 21.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Math. Soc. Series of Monographs and Advanced Texts. Wiley, New York (1983) MATHGoogle Scholar
  22. 22.
    Deutsch, F.: The role of the strong conical hull intersection property in convex optimization and approximation. In: Approximation Theory IX, vol. I, Nashville, TN, 1998. Innov. Appl. Math., pp. 105–112. Vanderbilt Univ. Press, Nashville (1998) Google Scholar
  23. 23.
    Duffin, R.J.: Infinite programs. In: Tucker, A.W. (ed.) Linear Equalities and Related Systems, pp. 157–170. Princeton University Press, Princeton (1956) Google Scholar
  24. 24.
    Faybusovich, L.: On Nesterov’s approach to semi-infinite programming. Acta Appl. Math. 74(2), 195–215 (2002) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Freund, R.M., Ordóñez, F., Toh, K.C.: Behavioral measures and their correlation with IPM iteration counts on semi-definite programming problems. USC-ISE working paper #2005-02, MIT (2005).
  26. 26.
    Freund, R.M., Vera, J.R.: Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithm. SIAM J. Optim. 10(1), 155–176 (1999) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Fujisawa, K., Fukuda, M., Nakata, K.: Preprocessing sparse semidefinite programs via matrix completion. Optim. Methods Softw. 21(1), 17–39 (2006) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Goldman, A.J., Tucker, A.W.: Theory of linear programming. In: Linear Inequalities and Related Systems, pp. 53–97. Annals of Mathematics Studies, vol. 38. Princeton University Press, Princeton, (1956) Google Scholar
  29. 29.
    Gondzio, J.: Presolve analysis of linear programs prior to applying an interior point method. INFORMS J. Comput. 9(1), 73–91 (1997) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Gonzalez-Lima, M., Wei, H., Wolkowicz, H.: A stable primal-dual approach for linear programming under nondegeneracy assumptions. Comput. Optim. Appl. 44(2), 213–247 (2009) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Guignard, M.: Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control 7(2), 232–241 (1969) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Halická, M., de Klerk, E., Roos, C.: On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12(4), 1090–1099 (2002) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Helmberg, C.: Semidefinite programming. Eur. J. Oper. Res. 137(3), 461–482 (2002) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Holmes, R.B.: Geometric Functional Analysis and Its Applications. Springer, Berlin, (1975) MATHCrossRefGoogle Scholar
  35. 35.
    Jeyakumar, V., Lee, G.M.: Complete characterizations of stable Farkas’ lemma and cone-convex programming duality. Math. Program. 114(2, Ser. A), 335–347 (2008) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Jeyakumar, V., Li, G.Y.: Stable zero duality gaps in convex programming: complete dual characterisations with applications to semidefinite programs. J. Math. Anal. Appl. 360(1), 156–167 (2009) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Ji, J., Potra, F.A., Sheng, R.: On the local convergence of a predictor-corrector method for semidefinite programming. SIAM J. Optim. 10(1), 195–210 (1999) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Jibetean, D., Laurent, M.: Semidefinite approximations for global unconstrained polynomial optimization. SIAM J. Optim. 16(2), 490–514 (2005) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Koberstein, A., Suhl, U.H.: Progress in the dual simplex method for large scale LP problems: practical dual phase 1 algorithms. Comput. Optim. Appl. 37(1), 49–65 (2007) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Kojima, M., Shida, M., Shindoh, S.: Local convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs. Technical report, Dept. of Information Sciences, Tokyo Institute of Technology, Tokyo, Japan (1996) Google Scholar
  41. 41.
    Krishnan, K., Terlaky, T.: Interior point and semidefinite approaches in combinatorial optimization. In: Graph theory and combinatorial optimization. GERAD 25th Anniv. Ser, vol. 8, pp. 101–157. Springer, New York (2005) CrossRefGoogle Scholar
  42. 42.
    Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM J. Optim. 20(5), 2679–2708 (2010) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Kurcyusz, S.: On the existence of Lagrange multipliers for infinite dimensional extremal problems. Bull. Acad. Pol. Sci., Sér. Sci. Tech. 22, 799–802 (1974) MathSciNetMATHGoogle Scholar
  44. 44.
    Kurcyusz, S.: On the existence and non-existence Lagrange multipliers in Banach spaces. J. Optim. Theory Appl. 20(1), 81–110 (1976) MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998) MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969) MATHGoogle Scholar
  47. 47.
    Luo, Z.-Q., Sturm, J.F., Zhang, S.: Superlinear convergence of a symmetric primal-dual path-following algorithm for semidefinite programming. SIAM J. Optim. 8, 59–81 (1998) MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Mészáros, C., Gondzio, J.: Addendum to: “Presolve analysis of linear programs prior to applying an interior point method” [INFORMS J. Comput. 9 (1997), no. 1, 73–91; MR 99a:90120] by Gondzio. INFORMS J. Comput. 13(2), 169–170 (2001) MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Monteiro, R.D.C.: First- and second-order methods for semidefinite programming. Math. Program., Ser. B 97(1–2), 209–244 (2003) MathSciNetMATHGoogle Scholar
  50. 50.
    Nesterov, Y.E., Nemirovski, A.S.: Interior Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994) MATHCrossRefGoogle Scholar
  51. 51.
    Pais, A.G.: Cone extreme points and faces. J. Math. Anal. Appl. 126(1), 223–228 (1987) MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Pataki, G.: On the closedness of the linear image of a closed convex cone. Math. Oper. Res. 32(2), 395–412 (2007) MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Pólik, I., Terlaky, T.: Exact duality for optimization over symmetric cones. Technical report, McMaster University, Hamilton, Ontario, Canada (2007) Google Scholar
  54. 54.
    Potra, F.A., Sheng, R.: Superlinear convergence of a predictor-corrector method for semidefinite programming without shrinking central path neighborhood. Bull. Math. Soc. Sci. Math. Roum. 43(91)(2), 107–124 (2000) MathSciNetGoogle Scholar
  55. 55.
    Pshenichniyi, B.N.: Necessary conditions for an extremum. Pure and Applied Mathematics, vol. 4. Dekker, New York (1971). Translated from the Russian by K. Makowski. Translation edited by L.W. Neustadt Google Scholar
  56. 56.
    Ramana, M.V.: An algorithmic analysis of multiquadratic and semidefinite programming problems. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD (1993) Google Scholar
  57. 57.
    Ramana, M.V.: An exact duality theory for semidefinite programming and its complexity implications. Math. Program. 77(2), 129–162 (1997) MathSciNetMATHGoogle Scholar
  58. 58.
    Ramana, M.V., Tunçel, L., Wolkowicz, H.: Strong duality for semidefinite programming. SIAM J. Optim. 7(3), 641–662 (1997) MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Renegar, J.: Some perturbation theory for linear programming. Math. Program., Ser. A 65(1), 73–91 (1994) MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Renegar, J.: Incorporating condition measures into the complexity theory of linear programming. SIAM J. Optim. 5(3), 506–524 (1995) MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Renegar, J.: Linear programming, complexity theory and elementary functional analysis. Math. Program., Ser. A 70(3), 279–351 (1995) MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Robinson, S.M.: Stability theorems for systems of inequalities, part ii: differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976) MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997). Reprint of the 1970 original, Princeton Paperbacks Google Scholar
  64. 64.
    Schurr, S.P.: Private communication. Technical report, University of Waterloo, Waterloo, ON (2008) Google Scholar
  65. 65.
    Shapiro, A., Nemirovskii, A.: Duality of linear conic problems. Technical report, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA (2003) Google Scholar
  66. 66.
    Shapiro, A., Scheinberg, K.: Duality and optimality conditions. In: Handbook of Semidefinite Programming. Internat. Ser. Oper. Res. Management Sci., vol. 27, pp. 67–110. Kluwer Academic, Boston (2000) CrossRefGoogle Scholar
  67. 67.
    Todd, M.J.: Semidefinite programming. Acta Numer. 10, 515–560 (2001) MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Tunçel, L.: On the Slater condition for the SDP relaxations of nonconvex sets. Oper. Res. Lett. 29(4), 181–186 (2001) MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006) MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Waksman, Z., Epelman, M.: On point classification in convex sets. Math. Scand. 38(1), 83–96 (1976) MathSciNetMATHGoogle Scholar
  71. 71.
    Wei, H., Wolkowicz, H.: Generating and solving hard instances in semidefinite programming. Math. Program. 125(1), 31–45 (2010) MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Wolkowicz, H.: Some applications of optimization in matrix theory. Linear Algebra Appl. 40, 101–118 (1981) MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, vol. 27. Kluwer Academic, Boston (2000) Google Scholar
  74. 74.
    Wolkowicz, H., Zhao, Q.: Semidefinite programming relaxations for the graph partitioning problem. Discrete Appl. Math. 96/97, 461–479 (1999) MathSciNetCrossRefGoogle Scholar
  75. 75.
    Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim. 2(1), 71–109 (1998) MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5, 49–62 (1979) MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Zuluaga, L.F., Vera, J., Peña, J.: LMI approximations for cones of positive semidefinite forms. SIAM J. Optim. 16(4), 1076–1091 (2006) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Combinatorics & OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations