Computational Optimization and Applications

, Volume 54, Issue 1, pp 141–162 | Cite as

An efficient compact quadratic convex reformulation for general integer quadratic programs

  • Alain Billionnet
  • Sourour Elloumi
  • Amélie LambertEmail author


We address the exact solution of general integer quadratic programs with linear constraints. These programs constitute a particular case of mixed-integer quadratic programs for which we introduce in Billionnet et al. (Math. Program., 2010) a general solution method based on quadratic convex reformulation, that we called MIQCR. This reformulation consists in designing an equivalent quadratic program with a convex objective function. The problem reformulated by MIQCR has a relatively important size that penalizes its solution time. In this paper, we propose a convex reformulation less general than MIQCR because it is limited to the general integer case, but that has a significantly smaller size. We call this approach Compact Quadratic Convex Reformulation (CQCR). We evaluate CQCR from the computational point of view. We perform our experiments on instances of general integer quadratic programs with one equality constraint. We show that CQCR is much faster than MIQCR and than the general non-linear solver BARON (Sahinidis and Tawarmalani, User’s manual, 2010) to solve these instances. Then, we consider the particular class of binary quadratic programs. We compare MIQCR and CQCR on instances of the Constrained Task Assignment Problem. These experiments show that CQCR can solve instances that MIQCR and other existing methods fail to solve.


Quadratic programming Integer programming Exact convex reformulation Computational experiments 


  1. 1.
    Audet, C., Hansen, P., Savard, G.: Essays and Surveys in Global Optimization. GERAD 25th Anniversary Series. Springer, New York (2005) zbMATHCrossRefGoogle Scholar
  2. 2.
    Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0–1 programming problems. J. Optim. Theory Appl. 93(2), 273–300 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to the case of general mixed integer program. Math. Program. 13(1), 381–401 (2012) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Billionnet, A., Elloumi, S., Lambert, A.: Linear reformulations of integer quadratic programs. In: Le Thi, H.A., Bouvry, P., Tao, P.D. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences, Second International Conference, MCO 2008, September 8–10, Metz, France, pp. 43–51 (2008) CrossRefGoogle Scholar
  5. 5.
    Billionnet, A., Elloumi, S., Plateau, M.-C.: Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR method. Discrete Appl. Math. 157(6), 1185–1197 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Borchers, B.: CSDP, A C library for semidefinite programming. Optim. Methods Softw. 11(1), 613–623 (1999) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cui, Y.: Dynamic programming algorithms for the optimal cutting of equal rectangles. Appl. Math. Model. 29, 1040–1053 (2005) zbMATHCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Elloumi, S.: Contribution à la résolution des programmes non linéaires en variables 0–1, application aux problèmes de placement de tâches dans les systèmes distribués. Thèse de doctorat en informatique, Conservatoire National des Arts et Métiers (1991) Google Scholar
  10. 10.
    Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Floudas, C.A.: Deterministic Global Optimization. Kluwer Academic, Dordrecht (2000) Google Scholar
  12. 12.
    Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106, 225–236 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fu, H.L., Shiue, L., Cheng, X., Du, D.Z., Kim, J.M.: Quadratic integer programming with application in the chaotic mappings of complete multipartite graphs. J. Optim. Theory Appl. 110(3), 545–556 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completness. Freeman, San Francisco (1979) Google Scholar
  15. 15.
  16. 16.
    Hahn, P., Kim, B.J., Guignard, M., Smith, J., Zhu, Y.R.: An algorithm for the generalized quadratic assignment problem. Comput. Optim. Appl. 40(3), 351–372 (2008). Available online doi: 10.1007/s10589-007-9093-1 MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hua, Z.S., Banerjee, P.: Aggregate line capacity design for PWB assembly systems. Int. J. Prod. Res. 38(11), 2417–2441 (2000) zbMATHCrossRefGoogle Scholar
  18. 18.
    IBM-ILOG, IBM ILOG CPLEX 12.1 Reference Manual. IBM ILOG CPLEX (2010) Google Scholar
  19. 19.
    Liberti, L., Maculan, N.: Nonconvex optimization and its applications. In: Global Optimization: From Theory to Implementation. Springer, New York (2006) Google Scholar
  20. 20.
    Laguna, M., Mart, R.: GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J. Comput. 11, 44–52 (1999) zbMATHCrossRefGoogle Scholar
  21. 21.
    Lambert, A.: Résolution de programmes quadratiques en nombres entiers. Thèse de doctorat en informatique, Conservatoire National des Arts et Métiers. (ref. CEDRIC 1838) (2009) Google Scholar
  22. 22.
    Mateus, G.R., Resende, M.G.C., Silva, R.M.A.: GRASP with path-relinking for the generalized quadratic assignment problem. J. Heuristics 17(1), 527–565 (2011) zbMATHCrossRefGoogle Scholar
  23. 23.
  24. 24.
    Resende, M.G.C., Ribeiro, C.C.: GRASP with path-relinking: recent advances and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers, pp. 29–63. Springer, Berlin (2005) CrossRefGoogle Scholar
  25. 25.
    Sahinidis, N.V., Tawarmalani, M.: BARON 9.0.4: Global optimization of mixed-integer nonlinear programs. User’s manual (2010). Available at
  26. 26.
    Sahinidis, N.V., Tawarmalani, M.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Sherali, H.D., Adams, W.P.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manag. Sci. 32(10), 1274–1290 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
  29. 29.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer Academic, Dordrecht (2002) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alain Billionnet
    • 1
  • Sourour Elloumi
    • 1
  • Amélie Lambert
    • 2
    Email author
  1. 1.CEDRIC-ENSIIEEvry cedexFrance
  2. 2.CEDRIC-CNAMParis Cedex 03France

Personalised recommendations