Computational Optimization and Applications

, Volume 51, Issue 3, pp 1345–1373

Path-following for optimal control of stationary variational inequalities

Article
  • 169 Downloads

Abstract

Moreau-Yosida based approximation techniques for optimal control of variational inequalities are investigated. Properties of the path generated by solutions to the regularized equations are analyzed. Combined with a semi-smooth Newton method for the regularized problems these lead to an efficient numerical technique.

Keywords

Variational inequalities Optimal control Regularization Sensitivity equation Path-following Sufficient optimality conditions Semi-smooth Newton method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbu, V.: Optimal Control of Variational Inequalities. Monographs and Studies in Mathematics, vol. 24. Pitman, London (1984) MATHGoogle Scholar
  2. 2.
    Bergounioux, M., Mignot, F.: Optimal control of obstacle problems: existence of Lagrange multipliers. ESAIM Control Optim. Calc. Var. 5, 45–70 (2000) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Dontchev, A.L.: Implicit function theorems for generalized equations. Math. Program. 70, 91–106 (1995) MathSciNetMATHGoogle Scholar
  4. 4.
    Hintermüller, M., Kopacka, I.: A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. IFB-Report No. 21 (11/2008) (2008) Google Scholar
  5. 5.
    Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hintermüller, M., Kunisch, K.: Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17(1), 159–187 (2006) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ito, K., Kunisch, K.: An augmented Lagrangian technique for variational inequalities. Appl. Math. Optim. 21(3), 223–241 (1990) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ito, K., Kunisch, K.: Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41(3), 343–364 (2000) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ito, K., Kunisch, K.: On the Lagrange Multiplier Approach to Variational Problems and Applications. Monographs and Studies in Mathematics, vol. 24. SIAM, Philadelphia (2008) CrossRefGoogle Scholar
  10. 10.
    Kunisch, K., Wachsmuth, D.: Sufficient optimality conditions and semi-smooth Newton methods for optimal control of stationary variational inequalities. ESAIM Control Optim. Calc. Var. (2011, to appear) Google Scholar
  11. 11.
    Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Schiela, A., Günter, A.: Interior point methods in function space for state constraints—inexact Newton and adaptivity. ZIB-Report 09-01 Google Scholar
  13. 13.
    Stadler, G.: Path-following and augmented Lagrangian methods for contact problems in linear elasticity. J. Comput. Appl. Math. 203(2), 533–547 (2007) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15(1), 189–258 (1965) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Ulbrich, M., Ulbrich, S.: Primal-dual interior-point methods for PDE-constrained optimization. Math. Program. 117(1–2), 435–485 (2009) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Weiser, M., Deuflhard, P.: Inexact central path following algorithms for optimal control problems. SIAM J. Control Optim. 46(3), 792–815 (2007) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Wright, S.J.: Primal-dual Interior-point Methods. SIAM, Philadelphia (1997) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute for Mathematics and Scientific ComputingGrazAustria
  2. 2.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria

Personalised recommendations