Reconstructing a matrix from a partial sampling of Pareto eigenvalues
Article
First Online:
- 159 Downloads
- 3 Citations
Abstract
Let Λ={λ 1,…,λ p } be a given set of distinct real numbers. This work deals with the problem of constructing a real matrix A of order n such that each element of Λ is a Pareto eigenvalue of A, that is to say, for all k∈{1,…,p} the complementarity system
admits a nonzero solution x∈ℝ n .
$$x\geq \mathbf{0}_n,\quad Ax-\lambda_k x\geq \mathbf{0}_n,\quad \langle x, Ax-\lambda_k x\rangle = 0$$
Keywords
Cone-constrained eigenvalue problem Pareto spectrum Inverse Pareto eigenvalue problem Newton method Normal flow algorithm Underdetermined system of equationsPreview
Unable to display preview. Download preview PDF.
References
- 1.Abaffy, J., Galántai, A., Spedicato, E.: The local convergence of ABS methods for nonlinear algebraic equations. Numer. Math. 51, 429–439 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Adly, S., Seeger, A.: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. (2010), in press, online Oct. 2009 Google Scholar
- 3.Bai, Z.-J.: Inexact Newton methods for inverse eigenvalue problems. Appl. Math. Comput. 172, 682–689 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Bai, Z.-J., Chan, R.H., Morini, B.: On the convergence rate of a Newton-like method for inverse eigenvalue and inverse singular value problems. Int. J. Appl. Math. 13, 59–69 (2003) MathSciNetzbMATHGoogle Scholar
- 5.Ben-Israel, A.: A Newton-Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15, 243–252 (1966) MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Borobia, A.: On the nonnegative eigenvalue problem. Linear Algebra Appl. 223/224, 131–140 (1995) MathSciNetCrossRefGoogle Scholar
- 7.Chan, R.H., Chung, H.L., Xu, S.-F.: The inexact Newton-like method for inverse eigenvalue problem. BIT 43, 7–20 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Chen, X.-D., Qi, Y.-C.: The Pareto eigenvalue problem of some matrices. J. Shanghai Second Polytech. Univ. 27, 54–64 (2010) (Chinese) zbMATHGoogle Scholar
- 9.Chen, X., Nashed, Z., Qi, L.: Convergence of Newton’s method for singular smooth and nonsmooth equations using adaptive outer inverses. SIAM J. Optim. 7, 445–462 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Egleston, P.D., Lenker, T.D., Narayan, S.K.: The nonnegative inverse eigenvalue problem. Linear Algebra Appl. 379, 475–490 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Facchinei, F., Pang, J.P.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003) Google Scholar
- 12.Figueiredo, I.N., Júdice, J.J., Martins, J.A.C., Pinto da Costa, A.: A complementarity eigenproblem in the stability of finite dimensional elastic systems with frictional contact. In: Ferris, M., Mangasarian, O., Pang, J.S. (eds.) Complementarity: Applications, Algorithms and Extensions. Applied Optimization Series, vol. 50, pp. 67–83. Kluwer Acad., Dordrecht (1999) Google Scholar
- 13.Figueiredo, I.N., Júdice, J.J., Martins, J.A.C., Pinto da Costa, A.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004) zbMATHCrossRefGoogle Scholar
- 14.Friedland, S., Nocedal, J., Overton, M.L.: The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24, 634–667 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
- 15.He, J.-S., Li, C., Wang, J.-H.: Newton’s method for underdetermined systems of equations under the γ-condition. Numer. Funct. Anal. Optim. 28, 663–679 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Huang, Z.J.: A new method for solving nonlinear underdetermined systems. Math. Appl. Comput. 13, 33–48 (1994) zbMATHGoogle Scholar
- 17.Humes, C., Júdice, J.J., Queiroz, M.: The symmetric eigenvalue complementarity problem. Math. Comput. 73, 1849–1863 (2004) zbMATHGoogle Scholar
- 18.Júdice, J.J., Ribeiro, I.M., Sherali, H.D.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37, 139–156 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Júdice, J.J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391–407 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Júdice, J.J., Ribeiro, I.M., Rosa, S.S., Sherali, H.D.: On the asymmetric eigenvalue complementarity problem. Optim. Methods Softw. 24, 549–586 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Kellogg, R.B.: Matrices similar to a positive or essentially positive matrix. Linear Algebra Appl. 4, 191–204 (1971) MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic, Dordrecht (2002) zbMATHGoogle Scholar
- 23.Martínez, J.M.: Quasi-Newton methods for solving underdetermined nonlinear simultaneous equations. J. Comput. Appl. Math. 34, 171–190 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Nocedal, J., Overton, M.L.: Numerical methods for solving inverse eigenvalue problems. In: Numerical Methods, Caracas, 1982. Lect. Notes in Math., vol. 1005, pp. 212–226. Springer, Berlin (1983) CrossRefGoogle Scholar
- 25.Pang, J.S.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15, 311–341 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Pinto da Costa, A., Seeger, A.: Numerical resolution of cone-constrained eigenvalue problems. Comput. Appl. Math. 28, 37–61 (2009) MathSciNetzbMATHGoogle Scholar
- 27.Pinto da Costa, A., Seeger, A.: Cone-constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl. 45, 25–57 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Salzmann, F.L.: A note on eigenvalues of nonnegative matrices. Linear Algebra Appl. 5, 329–338 (1972) MathSciNetzbMATHGoogle Scholar
- 30.Scholtyssek, V.: Solving inverse eigenvalue problems by a projected Newton method. Numer. Funct. Anal. Optim. 17, 925–944 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292, 1–14 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
- 32.Seeger, A., Torki, M.: On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372, 181–206 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Seeger, A., Vicente-Pérez, J.: Inverse eigenvalue problems for linear complementarity systems. April (2010), submitted Google Scholar
- 34.Suleimanova, H.R.: Stochastic matrices with real characteristic numbers. Dokl. Akad. Nauk SSSR 66, 343–345 (1949) MathSciNetzbMATHGoogle Scholar
- 35.Suleimanova, H.R.: The question of a necessary and sufficient condition for the existence of a stochastic matrix with prescribed characteristic numbers. Trudy Vsesojuz. Zaocn. Energet. Inst. Vyp 28, 33–49 (1965) MathSciNetGoogle Scholar
- 36.Tanabe, K.: Continuous Newton-Raphson method for solving an underdetermined system of nonlinear equations. Nonlinear Anal. 3, 495–503 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Tanabe, K.: Global analysis of continuous analogues of the Levenberg-Marquardt and Newton-Raphson methods for solving nonlinear equations. Ann. Inst. Stat. Math. 37, 189–203 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Walker, H.F.: Newton-like methods for underdetermined systems. In: Computational Solution of Nonlinear Systems of Equations, Fort Collins, 1988. Lectures in Appl. Math., vol. 26, pp. 679–699. Am. Math. Soc., Providence (1990) Google Scholar
- 39.Walker, H.F., Watson, L.T.: Least-change secant update methods for underdetermined systems. SIAM J. Numer. Anal. 27, 1227–1262 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2011