Computational Optimization and Applications

, Volume 51, Issue 3, pp 1119–1135 | Cite as

Reconstructing a matrix from a partial sampling of Pareto eigenvalues

Article

Abstract

Let Λ={λ1,…,λp} be a given set of distinct real numbers. This work deals with the problem of constructing a real matrix A of order n such that each element of Λ is a Pareto eigenvalue of A, that is to say, for all k∈{1,…,p} the complementarity system
$$x\geq \mathbf{0}_n,\quad Ax-\lambda_k x\geq \mathbf{0}_n,\quad \langle x, Ax-\lambda_k x\rangle = 0$$
admits a nonzero solution x∈ℝn.

Keywords

Cone-constrained eigenvalue problem Pareto spectrum Inverse Pareto eigenvalue problem Newton method Normal flow algorithm Underdetermined system of equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abaffy, J., Galántai, A., Spedicato, E.: The local convergence of ABS methods for nonlinear algebraic equations. Numer. Math. 51, 429–439 (1987) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Adly, S., Seeger, A.: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. (2010), in press, online Oct. 2009 Google Scholar
  3. 3.
    Bai, Z.-J.: Inexact Newton methods for inverse eigenvalue problems. Appl. Math. Comput. 172, 682–689 (2006) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bai, Z.-J., Chan, R.H., Morini, B.: On the convergence rate of a Newton-like method for inverse eigenvalue and inverse singular value problems. Int. J. Appl. Math. 13, 59–69 (2003) MathSciNetMATHGoogle Scholar
  5. 5.
    Ben-Israel, A.: A Newton-Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15, 243–252 (1966) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Borobia, A.: On the nonnegative eigenvalue problem. Linear Algebra Appl. 223/224, 131–140 (1995) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chan, R.H., Chung, H.L., Xu, S.-F.: The inexact Newton-like method for inverse eigenvalue problem. BIT 43, 7–20 (2003) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chen, X.-D., Qi, Y.-C.: The Pareto eigenvalue problem of some matrices. J. Shanghai Second Polytech. Univ. 27, 54–64 (2010) (Chinese) MATHGoogle Scholar
  9. 9.
    Chen, X., Nashed, Z., Qi, L.: Convergence of Newton’s method for singular smooth and nonsmooth equations using adaptive outer inverses. SIAM J. Optim. 7, 445–462 (1997) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Egleston, P.D., Lenker, T.D., Narayan, S.K.: The nonnegative inverse eigenvalue problem. Linear Algebra Appl. 379, 475–490 (2004) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Facchinei, F., Pang, J.P.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003) Google Scholar
  12. 12.
    Figueiredo, I.N., Júdice, J.J., Martins, J.A.C., Pinto da Costa, A.: A complementarity eigenproblem in the stability of finite dimensional elastic systems with frictional contact. In: Ferris, M., Mangasarian, O., Pang, J.S. (eds.) Complementarity: Applications, Algorithms and Extensions. Applied Optimization Series, vol. 50, pp. 67–83. Kluwer Acad., Dordrecht (1999) Google Scholar
  13. 13.
    Figueiredo, I.N., Júdice, J.J., Martins, J.A.C., Pinto da Costa, A.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004) MATHCrossRefGoogle Scholar
  14. 14.
    Friedland, S., Nocedal, J., Overton, M.L.: The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24, 634–667 (1987) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    He, J.-S., Li, C., Wang, J.-H.: Newton’s method for underdetermined systems of equations under the γ-condition. Numer. Funct. Anal. Optim. 28, 663–679 (2007) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Huang, Z.J.: A new method for solving nonlinear underdetermined systems. Math. Appl. Comput. 13, 33–48 (1994) MATHGoogle Scholar
  17. 17.
    Humes, C., Júdice, J.J., Queiroz, M.: The symmetric eigenvalue complementarity problem. Math. Comput. 73, 1849–1863 (2004) MATHGoogle Scholar
  18. 18.
    Júdice, J.J., Ribeiro, I.M., Sherali, H.D.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37, 139–156 (2007) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Júdice, J.J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391–407 (2008) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Júdice, J.J., Ribeiro, I.M., Rosa, S.S., Sherali, H.D.: On the asymmetric eigenvalue complementarity problem. Optim. Methods Softw. 24, 549–586 (2009) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kellogg, R.B.: Matrices similar to a positive or essentially positive matrix. Linear Algebra Appl. 4, 191–204 (1971) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic, Dordrecht (2002) MATHGoogle Scholar
  23. 23.
    Martínez, J.M.: Quasi-Newton methods for solving underdetermined nonlinear simultaneous equations. J. Comput. Appl. Math. 34, 171–190 (1991) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Nocedal, J., Overton, M.L.: Numerical methods for solving inverse eigenvalue problems. In: Numerical Methods, Caracas, 1982. Lect. Notes in Math., vol. 1005, pp. 212–226. Springer, Berlin (1983) CrossRefGoogle Scholar
  25. 25.
    Pang, J.S.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15, 311–341 (1990) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Pinto da Costa, A., Seeger, A.: Numerical resolution of cone-constrained eigenvalue problems. Comput. Appl. Math. 28, 37–61 (2009) MathSciNetMATHGoogle Scholar
  27. 27.
    Pinto da Costa, A., Seeger, A.: Cone-constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl. 45, 25–57 (2010) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Salzmann, F.L.: A note on eigenvalues of nonnegative matrices. Linear Algebra Appl. 5, 329–338 (1972) MathSciNetMATHGoogle Scholar
  30. 30.
    Scholtyssek, V.: Solving inverse eigenvalue problems by a projected Newton method. Numer. Funct. Anal. Optim. 17, 925–944 (1996) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292, 1–14 (1999) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Seeger, A., Torki, M.: On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372, 181–206 (2003) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Seeger, A., Vicente-Pérez, J.: Inverse eigenvalue problems for linear complementarity systems. April (2010), submitted Google Scholar
  34. 34.
    Suleimanova, H.R.: Stochastic matrices with real characteristic numbers. Dokl. Akad. Nauk SSSR 66, 343–345 (1949) MathSciNetMATHGoogle Scholar
  35. 35.
    Suleimanova, H.R.: The question of a necessary and sufficient condition for the existence of a stochastic matrix with prescribed characteristic numbers. Trudy Vsesojuz. Zaocn. Energet. Inst. Vyp 28, 33–49 (1965) MathSciNetGoogle Scholar
  36. 36.
    Tanabe, K.: Continuous Newton-Raphson method for solving an underdetermined system of nonlinear equations. Nonlinear Anal. 3, 495–503 (1979) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Tanabe, K.: Global analysis of continuous analogues of the Levenberg-Marquardt and Newton-Raphson methods for solving nonlinear equations. Ann. Inst. Stat. Math. 37, 189–203 (1985) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Walker, H.F.: Newton-like methods for underdetermined systems. In: Computational Solution of Nonlinear Systems of Equations, Fort Collins, 1988. Lectures in Appl. Math., vol. 26, pp. 679–699. Am. Math. Soc., Providence (1990) Google Scholar
  39. 39.
    Walker, H.F., Watson, L.T.: Least-change secant update methods for underdetermined systems. SIAM J. Numer. Anal. 27, 1227–1262 (1990) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Department of MathematicsUniversity of AvignonAvignonFrance

Personalised recommendations