Computational Optimization and Applications

, Volume 51, Issue 3, pp 1297–1317 | Cite as

A benchmark library and a comparison of heuristic methods for the linear ordering problem

  • Rafael MartíEmail author
  • Gerhard Reinelt
  • Abraham Duarte


The linear ordering problem consists of finding an acyclic tournament in a complete weighted digraph of maximum weight. It is one of the classical NP-hard combinatorial optimization problems. This paper surveys a collection of heuristics and metaheuristic algorithms for finding near-optimal solutions and reports about extensive computational experiments with them. We also present the new benchmark library LOLIB which includes all instances previously used for this problem as well as new ones.


Metaheuristics Empirical comparison Library 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10589_2010_9384_MOESM1_ESM.pdf (199 kb)
Appendix (PDF 198 KB)


  1. 1.
    Achatz, H., Kleinschmidt, P., Lambsdorff, J.: Der Corruption Perceptions Index und das Linear Ordering Problem. ORNews 26, 10–12 (2006) Google Scholar
  2. 2.
    Aujac, H.: La hiérarchie des industries dans un tableau des echanges industriels. Rev. Econ. 2, 169–238 (1960) Google Scholar
  3. 3.
    Becker, O.: Das Helmstädtersche Reihenfolgeproblem – die Effizienz verschiedener Näherungsverfahren. In: Computer Uses in the Social Sciences, Bericht einer Working Conference des Inst. f. höh. Studien u. wiss. Forsch. Wien (1967) Google Scholar
  4. 4.
    Boenchendorf, K.: Reihenfolgenprobleme/Mean-Flow-Time Sequencing. Mathematical Systems in Economics, vol. 74. Verlagsgruppe Athenäum, Hain, Scriptor, Königstein (1982) Google Scholar
  5. 5.
    Campos, V., Glover, F., Laguna, M., Martí, R.: An experimental evaluation of a scatter search for the linear ordering problem. J. Glob. Optim. 21, 397–414 (2001) zbMATHCrossRefGoogle Scholar
  6. 6.
    Chanas, S., Kobylanski, P.: A new heuristic algorithm solving the linear ordering problem. Comput. Optim. Appl. 6, 191–205 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Charon, I., Hudry, O.: A survey on the linear ordering problem for weighted or unweighted tournaments. 4OR 5, 5–60 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chenery, H.B., Watanabe, T.: International comparisons of the structure of production. Econometrica 26, 487–521 (1958) CrossRefGoogle Scholar
  9. 9.
    Christof, T.: Low-dimensional 0/1-Polytopes and Branch-and-Cut in Combinatorial Optimization. Shaker, Aachen (1997) zbMATHGoogle Scholar
  10. 10.
    Christof, T., Reinelt, G.: Combinatorial optimization and small polytopes. Top 4, 1–64 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Condorcet, M.J.A.N.: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix (1785), Paris Google Scholar
  12. 12.
    Feo, T., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 2, 1–27 (1995) MathSciNetGoogle Scholar
  13. 13.
    Garcia, C.G., Pérez-Brito, D., Campos, V., Martí, R.: Variable neighborhood search for the linear ordering problem. Comput. Oper. Res. 33, 3549–3565 (2006) zbMATHCrossRefGoogle Scholar
  14. 14.
    Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Glover, F., Klastorin, T., Klingman, D.: Optimal weighted ancestry relationships. Manag. Sci. 20, 1190–1193 (1974) zbMATHCrossRefGoogle Scholar
  16. 16.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Dordrecht (1997) zbMATHCrossRefGoogle Scholar
  17. 17.
    Goemans, M.X., Hall, L.A.: The strongest facets of the acyclic subgraph polytope are unknown. In: Proc. of the 5th Int. IPCO Conference. LNCS, vol. 1084, pp. 415–429. Springer, Berlin (1996) Google Scholar
  18. 18.
    Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear ordering problem. Oper. Res. 32, 1195–1220 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Huang, G., Lim, A.: Designing a hybrid genetic algorithm for the linear ordering problem. In: Cantu-Paz, E., et al. (eds.) Proc. of Genetic and Evolutionary Computation—GECCO 2003. LNCS, vol. 2723, pp. 1053–1064. Springer, Berlin (2003) CrossRefGoogle Scholar
  20. 20.
    Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 145–184 (2003) Google Scholar
  21. 21.
    Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: performance of exact and heuristic algorithms. J. Graph Algorithms Appl. 1, 1–25 (1997) MathSciNetGoogle Scholar
  22. 22.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–308 (1979) Google Scholar
  23. 23.
    Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, Reading (1993) Google Scholar
  24. 24.
    Laguna, M., Martí, R., Campos, V.: Intensification and diversification with elite tabu search solutions for the linear ordering problem. Comput. Oper. Res. 26, 1217–1230 (1999) zbMATHCrossRefGoogle Scholar
  25. 25.
    Laguna, M., Martí, R.: Scatter Search: Methodology and Implementations in C. Kluwer Academic, Dordrecht (2003) CrossRefGoogle Scholar
  26. 26.
    Leontief, W.: Quantitative input-output relations in the economic system of the United States. Rev. Econ. Stat. 18, 105–125 (1936) CrossRefGoogle Scholar
  27. 27.
    Martí, R., Reinelt, G.: The Linear Ordering Problem: Exact and Heuristics Methods in Combinatorial Optimization. Applied Mathematical Sciences, vol. 175. Springer, Berlin (2010) Google Scholar
  28. 28.
    Mitchell, J.E., Borchers, B.: Solving linear ordering problems. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds.) High Performance Optimization. Applied Optimization, vol. 33, pp. 340–366. Kluwer Academic, Dordrecht (2000) Google Scholar
  29. 29.
    Reinelt, G.: The Linear Ordering Problem: Algorithms and Applications. Research and Exposition in Mathematics, vol. 8. Heldermann, Berlin (1985) zbMATHGoogle Scholar
  30. 30.
    Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid GRASP with perturbations for the Steiner problem in graphs. INFORMS J. Comput. 14, 228–246 (2002) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Schiavinotto, T., Stützle, T.: The linear ordering problem: instances, search space analysis and algorithms. J. Math. Model. Algorithms 3, 367–402 (2004) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rafael Martí
    • 1
    Email author
  • Gerhard Reinelt
    • 2
  • Abraham Duarte
    • 3
  1. 1.Dept. de Estadística e Investigación OperativaUniversity of ValenciaValenciaSpain
  2. 2.Institute for Computer ScienceUniversity of HeidelbergHeidelbergGermany
  3. 3.Dept. Ciencias de la ComputaciónUniversity Rey Juan CarlosMadridSpain

Personalised recommendations